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Likelihood-ratio and statistics

Definition

Consider a feature space X ⊂ Rn and two probability distributions P and Q
(Q� P ) such that they admit density functions p(x) and q(x) with respect
to dx, then the likelihood-ratio is defined as:

r(x) =
q(x)

p(x)
x ∈ X

Applications
I Hypothesis Testing (Neyman-Pearson Lemma [Neyman et al., 1933])
I Sequential Change-point detection [Page, 1954, Shiryaev, 1963]

I Transfer Learning (Importance sampling [Fishman, 1996])
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Existing methods

Usual non-parametric approach

r(·) is the solution of an optimization problem defined in terms of a
functional space H (RKHS) [Nguyen et al., 2008a, Sugiyama et al., 2012]

Single source or Data aggregation

What about multiple interrelated sources of data?

Indicative use-cases
I Spatial statistics and learning:

e.g. Monitoring geophysical phenomena using a sensor network, public
health surveillance, transport network analysis, ...
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Motivation and main contribution

1 Local information can be important
and data aggregation may hide
phenomena of interest

2 Ignoring inter-dependencies may
lead to a weaker performance than a
multitasking approach

Main contribution
Graph-based Relative Unconstrained
Least-Squares Importance Fitting
(GRULSIF): a framework addressing
both limitations by integrating a
graph component into the estimation
of multiple likelihood-ratios
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Problem statement

Question How to infer a vector of
likelihood-ratio functions
r(X) = (r1(x1), ..., rN (xN ))
from interrelated data sources?

Setting

I G = (V,E,W ) is a known
weighted undirected graph, and
W is a matrix encoding node
similarities

I Each node v ∈ V has batch
access to observations
x1, x2, ..., xn

iid∼ Pv and

x′1, x
′
2, ..., x

′
n′

iid∼ Qv

Figure: Example of different interrelated sources
of information. In this case X = R2
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Problem statement

Framework

I Infer the node-level
relative likelihood-ratios
rαv (·) =

qv(·)
(1−α)pv(·)+αqv(·)

I Non-parametric estimation based
on a kernel function
K(·, ·) : X × X → R+ to avoid
making hypotheses on the nature
of qv(·) and pv(·)

I Capitalize over the information
provided apriori by the graph:
‖ru − rv‖H < ε if Wuv 6= 0

Figure: We aim to estimate the set of functions
{rαv (·)}v∈V by exploiting G = (V,E)
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Application: Collaborative two-sample testing

Problem statement

Hnull : pv = qv, ∀v ∈ V vs Halt : pv 6= qv, ∀v ∈ C

where C is a subset of nodes, such that the vector
rα(X) = (rα1 (x), ..., r

α
N (x)) is a smooth signal over the graph G

Potential applications:

1 Detection of an earthquake

2 Characterization of the nature of an epidemic

3 Spot regions of pollution peak
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Inference techniques

Non-parametric estimation with a single data source

Definition

A φ-divergence functional quantifies the similarity between two probability
measures that are described by their p(x), q(x) in X:

Dφ(P,Q) =

∫
p(x)φ(r(x)) dx ≥ sup

f∈F

∫
fdQ−

∫
φ∗(f)dP (1)

where F is a functional space [Nguyen et al., 2008b].

If we choose the Pearson-Divergence φ(x) = (x−1)2

2 and F = H (RKHS),
then we aim to infer the likelihood-ratio r(·) by solving:

min
f∈H

∫
f2(x)

2
dP (x)−

∫
f(x)dQ(x)
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Inference techniques

Multitasking formulation of the problem
By the reproduction property of H, for each v ∈ V , fv takes the form:

fv(x) =
∑L

l=1 θv,iK(x, xi)

Then we estimate the vector-valued function f = (f1, ..., fN ) ∈ HN under
the hypothesis that θu and θv are expected to be similar if nodes u and v
are connected in G:

min
Θ∈RNL

1

N

∑
v∈V

Epαv (x)[(r
α
v (x)− fv(x))2]

2
+
λγ

2

∑
v∈V
‖θv‖2

+
λ

2

∑
u,v∈V

Wuv ‖θu − θv‖2
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Main results and contribution [de la Concha et al., 2022]

1 GRULSIF: Graph-based Relative Unconstrained
Least-Squares Importance Fitting

• A novel non-parametic framework for estimating
multiple likelihood-ratios

• A detailed and efficient implementation that is conveniently
scalable for big graphs

2 Collaborative two-sample test

• A detailed procedure that includes best hyperparameters indentification
and p-values estimation

• A collaborative two-sample test that outperforms non-parametric
approaches that does not take the graph into account:
KLIEP [Sugiyama et al., 2007], ULSIF [Sugiyama et al., 2011]

RULSIF [Yamada et al., 2011], MMD [Gretton et al., 2012]

MMD aggregated [Schrab et al., 2021]
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Thank you
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Gretton. MMD aggregated two-sample test, 2021.

A. N. Shiryaev. On optimum methods in quickest detection problems. Theory of Probability &
Its Applications, 8(1):22–46, 1963.

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Buenau, and Motoaki Kawanabe.
Direct importance estimation with model selection and its application to covariate
shift adaptation. In Advances in Neural Information Processing Systems, volume 20,
2007.

Masashi Sugiyama, Taiji Suzuki, Yuta Itoh, Takafumi Kanamori, and Manabu Kimura. Least-
squares two-sample test. Neural networks : the official journal of the International
Neural Network Society, 24:735–51, 04 2011.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density Ratio Estimation in Machine
Learning. Cambridge University Press, 2012.

Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and Masashi Sugiyama.
Relative density-ratio estimation for robust distribution comparison. In Advances in
Neural Information Processing Systems, 2011.
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