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Likelihood-ratio and statistics

Consider a feature space X C R"™ and two probability distributions P and @
(Q < P) such that they admit density functions p(x) and ¢(x) with respect
to dx, then the likelihood-ratio is defined as:

q(z)
rle)=—+= zekX
(@) p(z)
Applications

v
> Hypothesis Testing (Neyman-Pearson Lemma [Neyman et al., 1933])
» Sequential Change-point detection [Page, 1954, Shiryaev, 1963]

> Transfer Learning (Importance sampling [Fishman, 1996])
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Existing methods

Usual non-parametric approach

7(+) is the solution of an optimization problem defined in terms of a
functional space H (RKHS) [Nguyen et al., 2008a, Sugiyama et al., 2012]

Single source or Data aggregation

What about multiple interrelated sources of data?

Indicative use-cases
> Spatial statistics and learning:

e.g. Monitoring geophysical phenomena using a sensor network, public

health surveillance, transport network analysis; ... . = .= = 4ac
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Motivation and main contribution

@ Local information can be important
and data aggregation may hide
phenomena of interest

® lIgnoring inter-dependencies may
lead to a weaker performance than a
multitasking approach

Main contribution

Graph-based Relative Unconstrained
Least-Squares Importance Fitting
(GRULSIF): a framework addressing
both limitations by integrating a
graph component into the estimation
of multiple likelihood-ratios
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Problem statement

Question How to infer a vector of
likelihood-ratio functions

r(X) = (ri(z1), ., *n(7N))
from interrelated data sources?

Setting

» G=(V,E, W) is a known
weighted undirected graph, and
W is a matrix encoding node
similarities

> Each node v € V has batch

access to observations

iid Figure: Example of different interrelated sources
L1 L2505 T~ Ly and of information. In this case X = R2
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Problem statement

Framework

> Infer the node-level
relative likelihood-ratios
ry () = Mqv—()

pu()+agy ()

> Non-parametric estimation based
on a kernel function
K(,): X xX — R to avoid
making hypotheses on the nature
of QU(') and pv(')

> Capitalize over the information

prOVIded apriori bly the graph: Figure: We aim to estimate the set of functions
||7”'u — T‘vHH <e if Wy #0 {r&(-)}vev by exploiting G = (V, E)
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Application: Collaborative two-sample testing

Problem statement

Hyoi: po=q, YveV vs Hae : po 7é @, Yvel
where C'is a subset of nodes, such that the vector
r(X) = (r{(z),...,r{(x)) is a smooth signal over the graph G
Potential applications:

@ Detection of an earthquake

© Spot regions of pollution peak
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® Characterization of the nature of an epidemic



Inference techniques

Definition

Non-parametric estimation with a single data source
measures that are described by their p(z), ¢(z) in X
)

A ¢-divergence functional quantifies the similarity between two probability
(P.Q) = 1) 8(r(z

)) dz > sup
where F is a functional space [Nguyen et al., 2008b]

Jraa~ [5(5)a

(1)
) = 2% and F = H (RKHS),
then we aim to infer the likelihood-ratio r(-) by solving:
[ f(=) /
dP(x) — d
min [0 ap(@) - [ 1@)aQ)
o> F =) <= Dae

fer
If we choose the Pearson-Divergence ¢(x)




Inference techniques

Multitasking formulation of the problem

fo(x) =

By the reproduction property of H, for each v € V, f, takes the form

S v i K (0, 2)
Then we estimate the vector-valued function f
are connected in G

:(f17 7fN)€HN under
the hypothesis that 6, and 6,, are expected to be similar if nodes u and v

Epe (o)[(ry (x) —
@e]RNLN Z 2

7Zna I?
+ azwuv ||‘9

veV
u = 0o
u, eV

v
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Main results and contribution

©® GRULSIF: Graph-based Relative Unconstrained
Least-Squares Importance Fitting

® A novel non-parametic framework for estimating
multiple likelihood-ratios

® A detailed and efficient implementation that is conveniently
scalable for big graphs

® Collaborative two-sample test

® A detailed procedure that includes best hyperparameters indentification
and p-values estimation

® A collaborative two-sample test that outperforms non-parametric
approaches that does not take the graph into account:
KLIEP [Sugiyama et al., 2007], ULSIF [Sugiyama et al., 2011]
RULSIF [Yamada et al., 2011], MMD [Gretton et al., 2012]
MMD aggregated [Schrab et al., 2021]
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Thank you
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