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1.Background: Common Paired Sample Setting
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Definition: Paired data is where natural matching or coupling is 
possible. Every data point in one sample would be paired—
uniquely—to a data point in another sample. 
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Group of Patients

Before After

Definition: Paired data is where natural matching or coupling is 
possible. Every data point in one sample would be paired—
uniquely—to a data point in another sample. 

e.g. Sequential measurements (pre-treatment/post-treatment).
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• For 𝐷 ∈ ℝ1

• Use of Univariate hypothesis tests such as T-tests 
(parametric) or rank statistics (non-parametric).

• For 𝐷 ∈ ℝ𝑀, 𝑤ℎ𝑒𝑟𝑒 𝑀 > 1

• Use of multivariate hypothesis tests such as Hotelling
T2-test (HT2) or, 

• (Most of the times) independent consecutive 
univariate hypothesis tests, or else Multiple testing 
(MT)

Paired sample setting

Before After

1.Background: Common Practices in various fields
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• Multiple features

• Multiple univariate testing (Parametric/Non parametric)

• p-value calculation per feature

• p-values adjustment (or not ?)*

• Report

• Are the groups statistically different?

• In which dimension (feature) ?

*Multiple hypothesis testing increases the likelihood of observing a significant result 
purely by chance (Type I error). To counteract this inflation of false positives, p-
values are adjusted using false discovery rate (FDR) or family wise error rate 
(FWER) control methods (e.g. Bonferroni) to maintain a desired overall significance 
level.

1.Background: Multiple Testing (MT) workflow



1.Motivation: p-value debate…..To adjust or not to adjust?
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Group of Data

Independent Paired/Matched

>2 groups 
(Multi-class)

2 groups

-ANOVA    
(Parametric)

-Kruskal-Wallis    
(Non-parametric)

-Unpaired T-test 
(Parametric)

-Mann-Whitney-
Wilcoxon
(Non-parametric

>2 instances 
(Longitudinal)

2 instances

-Repeated Measures ANOVA 
(Parametric)

-Friedman test                    (Non-
parametric)

-Paired T-test (Parametric)

-Signed rank Wilcoxon
(Non-parametric) 

1.Motivation: Machine learning Framework for the two-sample problem
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1.Motivation: Machine learning Framework for paired samples?
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Objectives: Develop a test that:

• extends the use of a well known test 
(Wilcoxon signed rank) to higher 
dimensions

• Provide well-known outputs (p-values, 
effect sizes, significant features)

• is easy-implemented and understandable 
from non-experts

• “bypasses” the p-value adjustment 
discussion.



2.Methodology: The 2-step framework for the paired-sample problem
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Step 1 - Scoring: A decision rule is “learned”, using 
specific “properties”, and scores the instances.

(Here the aggregation manner of Hodges-Lehmann 
estimator calculation)

Step 2 - Testing: A univariate test is applied to 
produced scores.

(Here the Wilcoxon sign rank (WSR) test)

1

2

Key point: The creation of the decision rule in Step 1 should be 
linked to the statistic of the applied test in Step 2.



2.Methodology: Univariate Case - (Hodges-Lehmann and WSR)
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Wilcoxon Signed Rank (WSR) test

For paired X and Y, WSR test can be transformed to One sample test, and tests if 
the median (𝜃) of  𝑍(𝑍𝑖 = 𝑌𝑖 − 𝑋𝑖) differences is significantly different from 0.

WSR ranks the 𝑍𝑖 in ascending order, ignoring the signs and sums the ranks of the 
positive differences (greater than zero) to get T+.

Hodges-Lehmann estimator

The effect size 𝜃 between the paired samples, is estimated by the pseudomedian of 
the differences, which is in turn estimated by the Hodges-Lehmann estimator  𝜃. 

Therefore, as the median of the pairwise average differences, or else the Walsh 
Averages (W).

Key point 1: Supposing there are no ties and no 
zeros among the 𝑍𝑖’s, the number of positive Walsh 
averages (W+) is equal to the WSR statistic T+

(Hoyland, A. Robustness of the Hodges-Lehmann estimates for shift.
Annals of Math. Stat., 36(1):174–197, 1965.)

H𝐿 𝑍 =  𝜃 = 𝑚𝑒𝑑𝑖𝑎𝑛
1

2
(𝑍𝑖 + 𝑍𝑗); ∀𝑖 ≤ 𝑗 = 1, … , 𝑁



2.Methodology: From 1-D to d-D
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Multidimensional extension: 

1. The multidimensional Euclidean distance between two paired 
instances, 𝑋𝑖 and 𝑌𝑖, can be seen as an analogy to the difference 
𝑍𝑖 = 𝑌𝑖 − 𝑋𝑖 in a unidimensional setup. 

2. Each separating rule associated with a midpoint of the 1-D case, 
now becomes a (d−1)-dimensional perpendicular bisecting 
hyperplane.

3. Each such hyperplane is computed by taking into account only 
one specific pair of instances, yet it splits the space in two 
parts, and therefore it can be seen as a decision rule that could 
hopefully classify the data in two parts, the 𝑋 and the 𝑌 part.

A)

B)



2.Methodology: MWSR test
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1. Find the (d−1)-dimensional perpendicular bisecting hyperplane for 
every pair (𝑋𝑖 , 𝑌𝑖)
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1. Find the (d−1)-dimensional perpendicular bisecting hyperplane for 
every pair (𝑋𝑖 , 𝑌𝑖)

2. Aggregate these decisions to a classifier  𝐶∗ in a Hodges-Lehmann sense 
(  𝐶∗ pseudomedian classifier)
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1. Find the (d−1)-dimensional perpendicular bisecting hyperplane for 
every pair (𝑋𝑖 , 𝑌𝑖)

2. Aggregate these decisions to a classifier  𝐶∗ in a Hodges-Lehmann sense 
(  𝐶∗ pseudomedian classifier)

3. Score all instances 𝑆𝑋
∗ , 𝑆𝑌

∗ (1-D representation)

4. Apply Wilcoxon Sign Rank WSR(𝑆𝑋
∗ , 𝑆𝑌

∗)

Outputs:

1. p-value, size effect

2. Feature importance index from   𝐶∗ coefficients. 



2.Methodology: MWSR algorithm
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2.Results: Synthetic dataset with progressive shift of mean.
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Comparison between:

• MWSR

• Multiple Testing (MT) with Bonferroni 
adjustment

• Hotelling T2 test (HT2) 



3. Results: Effect of dimensionality and variance 
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The performance is presented as a function of the separation distance between the two distributions. On the x-axis the 
progressive difference in the mean value for the 10% of the dimensions (D) while on the y-axis it appears the % of 
significant results detected by each method.



3. Results: Feature « importance » index 
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The relative feature importance for MWSR per feature. The feature importance performance is presented
as a function of the separation distance between the two distributions (average difference on x-axis).



Conclusions/Perspectives
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Conclusions

1. MWSR outperforms the classical multivariate approaches 
(Hotelling T2 test, the multiple testing with p-value 
adjustment) in our experiments. 

2. MWSR is generally simple understandable

3. MWSR allows the user to interpret the actual contribution of 
every feature to the final result. 

4. MWSR is customizable with more sophisticated approches

Perspectives

1. Extension of framework to non-linear deformations

2. Extension of framework to more than one pair (E.G. repeated 
measures)



3. Results: Real Dataset
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3. Results: Real Dataset
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The relative importance of each feature as indicated by MT and MWSR on the posturographic dataset 

(D = 16 features)

MT MWSR



Thank you for your attention



Proof (Hodges-Lehmann estimator and WSR statistic association)
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Proof: Suppose we have continuous data , assumed to be symmetric around the mean . We consider the hypothesis 
. The signed rank statistic is:

Where

And is the rank of in . That is,

Now , from (1), (2)

We can remove dependence on the as the remaining indicator function will return zero if . From (3),

(1)

(2)

(3)


