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1.Background: Common Paired Sample Setting

Definition: Paired data is where natural matching or coupling is
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possible. Every data point in one sample would be paired— . .
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1.Background: Common Paired Sample Setting

Definition: Paired data is where natural matching or coupling is

o o
possible. Every data point in one sample would be paired— . .
. . . o o
uniquely—to a data point in another sample. ° . °% .
e.g. Sequential measurements (pre-treatment/post-treatment). g °o° o ° g e %
° g . °
: o 8 &,°
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1.Background: Common Practices in various fields

e ForDeR!

Use of Univariate hypothesis tests such as T-tests
(parametric) or rank statistics (non-parametric).

e ForD € RM whereM > 1

Use of multivariate hypothesis tests such as Hotelling
T2-test (HT2) or,

(Most of the times) independent consecutive
univariate hypothesis tests, or else Multiple testing
(MT)
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1.Background: Multiple Testing (MT) workflow

* Multiple features

e Multiple univariate testing (Parametric/Non parametric)

o
o

e p-value calculation per feature

* p-values adjustment (or not ?)*

o
8 o o o
*  Report E O I
° o
e Are the groups statistically different? g 0% o ° o o %
o ° )
. : : 8 .
* In which dimension (feature) ? 8 o ° g & ©
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*Multiple hypothesis testing increases the likelihood of observing a significant result
purely by chance (Type | error). To counteract this inflation of false positives, p-
values are adjusted using false discovery rate (FDR) or family wise error rate
(FWER) control methods (e.g. Bonferroni) to maintain a desired overall significance
level.



1.Motivation: p-value debate.....To adjust or not to adjust?

Debate | Open Access | Published: 17 June 2002

Do multiple outcome measures require p-value
adjustment?

nature > nature human behaviour > comment » article

Ronald J Feise

Comment ‘ Published: 01 September 2017

Redefine statistical significance

BMC Medical Research Methodology 2, Article number: 8 (2002) | Cite this article

67k Accesses | 759 Citations | 9 Altmetric | Metrics

Daniel J. Benjamin &, James O Berger, ... Valen E. Johnson =+ Show authors

Summary
Nature Human Behaviour 2, 6-10 (2018) ‘ Cite this article

Readers should balance a study's statistical significance with the magnitude of effect, the
. . . . . . 149k Accesses ‘ 1158 Citations ‘ 885 Altmetric ‘ Metrics
quality of the study and with findings from other studies. Researchers facing multiple outcome ———

measures might want to either select a primary outcome measure or use a global assessment
measure, rather than adjusting the p-value. We propose to change the default P-value threshold for statistical significance from 0.05

to 0.005 for claims of new discoveries.

BMJ
@ https:/fwww bmj com » content 3 The lack of reproducibility of scientific studies has caused growing concern over the

credibility of claims of new discoveries based on ‘statistically significant’ findings. There has

What's wrong with Bonferroni adjustments

been much progress toward documenting and addressing several causes of this lack of

by TV Perneger - 1998 - Cited by 6631 — This paper advances the view, widely held by reproducibility (for example, multiple testing, P-hacking, publication bias and under-
epidemiologists, that Bonferroni adjustments are, at best, unnecessary and, at worst,... powered studies). However, we believe that a leading cause of non-reproducibility has not yet

been adequately addressed: statistical standards of evidence for claiming new discoveries in

) . many fields of science are simply too low. Associating statistically significant findings with P <
When to use the B onferroni correction

RA Armstrong - Ophthalmic and Physiological Optics, 2014 - Wiley Online Library

Purpose The B onferroni correction adjusts probability (p) values because of the increased
risk of a type | error when making multiple statistical tests. The routine use of this test has .
¢ Save DY Cite Cited by 2666 Related articles All 6 versions




1.Motivation: Machine learning Framework for the two-sample problem

v

2 groups

v
-Unpaired T-test
(Parametric)

-Mann-Whitney-
Wilcoxon
(Non-parametric

v
Independent

.

v
>2 groups
(Multi-class)

-ANOVA
(Parametric)

-Kruskal-Wallis
(Non-parametric)

Group of Data

v

Paired/Matched

l |

>2 instances 2 instances
(Longitudinal)

; ‘ |

-Repeated Measures ANOVA -Paired T-test (Parametric)

(Parametric)

-Friedman test
parametric)

-Signed rank Wilcoxon
(Non- (Non-parametric)

ARTICLE FREE ACCESS ¥indg f

A kernel two-sample test

Authors: Arthur Gretton, Karsten M. Borgwardt, Malte ). Rasch, Bernhard Scholkopf, \é/ Alexander Smola

Authors Info & Claims

The Journal of Machine Learning Research, Volume 13 e 3/1/2012 « pp 723-773

Corpus ID: 2049706

AUC optimization and the two-sample problem

S. Clémencgon, N. Vayatis, M. Depecker + Published in NIPS 7 December 2009 = Computer Science

Classification accuracy as a proxy for two-
sample testing

llmun Kim, Aaditya Ramdas, Aarti Singh, Larry Wasserman

Ann. Statist. 49(1): 411-434 (February 2021). DOI: 10.1214/20-A051962

Two-sample Testing Using Deep Learning

Matthias Kirchler, Shahryar Khorasani, Marius Kloft, Christoph Lippert Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, PMLR 108:1387-1398, 2020.

Revealing posturographic Erofile of patients with
Parkinsonian syndromes through a novel hypothesis testing
framework based on machine learning

loannis Bargiotas [E, Argyris Kalogeratos, Myrto Limnios, Pierre-Paul Vidal, Damien Ricard, Nicolas Vayatis

Published: February 25, 2021 + https://doi.org/10.1371/journal.pone.0246790



1.Motivation: Machine learning Framework for paired samples?

Group of Data

\4 v
Independent Paired/Matched
l , l !
2 groups >2 groups >2 instances 2 instances
‘ (Multi-class) (Longitudinal) ‘
|
\4 \/ A\ 4 v
-Unpaired T-test -ANOVA -Repeated Measures ANOVA -Paired T-test (Parametric)
(Parametric) (Parametric) (Parametric)
-Signed rank Wilcoxon
-IV!ann-Whitney- -Kruskal-Wallis -Friedman test (Non- 'Non-parametric)
Wilcoxon (Non-parametric) parametric)

(Non-parametric




1.Motivation: Machine learning Framework for paired samples?

Group of Data

|

Independent

v

2 groups

v
-Unpaired T-test
(Parametric)

-Mann-Whitney-

Wilcoxon
(Non-parametric

!

>2 groups
(Multi-class)

I

v

-ANOVA
(Parametric)

-Kruskal-Wallis
(Non-parametric)

}

Paired/Matched

>2 instances

|

v
2 instances

(Longitudinal)

v

-Repeated Measures ANOVA

(Parametric)

-Friedman test
parametric)

(Non-

l

-Paired T-test (Parametric)

-Signed rank Wilcoxon
(Non-parametric)

Objectives: Develop a test that:

extends the use of a well known test
(Wilcoxon signed rank) to higher
dimensions

Provide well-known outputs (p-values,
effect sizes, significant features)

is easy-implemented and understandable
from non-experts

“bypasses” the p-value adjustment
discussion.




2.Methodology: The 2-step framework for the paired-sample problem

1 - Step 1-Scoring: A decision rule is “learned”, using
specific “properties”, and scores the instances.

(Here the aggregation manner of Hodges-Lehmann _ _ N _
~ estimator calculation) Key point: The creation of the decision rule in Step 1 should be

~ linked to the statistic of the applied test in Step 2.

2 - Step 2 - Testing: A univariate test is applied to
produced scores.

i (Here the Wilcoxon sign rank (WSR) test)



2.Methodology: Univariate Case - (Hodges-Lehmann and WSR)

Wilcoxon Signed Rank (WSR) test

For paired X and Y, WSR test can be transformed to One sample test, and tests if o
the median (0) of Z(Z; =Y, — X;) differences is significantly different from 0. Al

Hp:0=0, the Z;’s are symmetric around 6 = 0;
H;:0#0, the Z;’s are symmetric around 6 # 0.

WSR ranks the |Z;| in ascending order, ignoring the signs and sums the ranks of the | | | | |
positive differences (greater than zero) to get T+*. oo I R

Hodges-Lehmann estimator

The effect size 8 between the paired samples, is estimated by the pseudomedian gf
the differences, which is in turn estimated by the Hodges-Lehmann estimator 6.

Key point 1: Supposing there are no ties and no
zeros among the Z;’s, the number of positive Walsh

_ o _ averages (W*) is equal to the WSR statistic T*
Therefore, as the median of the pairwise average differences, or else the Walsh (Hoyland, A. Robustness of the Hodges-Lehmann estimates for shift.
Averages (W). Annals of Math. Stat., 36(1):174—-197, 1965.)

~ 1
HL(Z) = 6 = median{z (Zi+Z;); Vi<j=1, N}



2.Methodology: From 1-D to d-D

Multidimensional extension:

1.

The multidimensional Euclidean distance between two paired
instances, X; and Y;, can be seen as an analogy to the difference
Z; =Y; — X; in a unidimensional setup.

Each separating rule associated with a midpoint of the 1-D case,
now becomes a (d-1)-dimensional perpendicular bisecting
hyperplane.

Each such hyperplane is computed by taking into account only
one specific pair of instances, yet it splits the space in two
parts, and therefore it can be seen as a decision rule that could
hopefully classify the data in two parts, the X and the Y part.

B)

= X

oY
------ distance,
e,
------ distance,

e

2
distance,

rule,
e Pseudomedian

L 4
= I
------ distance,
|2
------ distance,
|,
distance,

rule;
s Udomedian




2.Methodology: MWSR test

1.  Find the (d-1)-dimensional perpendicular bisecting hyperplane for
every pair (X;,Y;)
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2.Methodology: MWSR test

1.

Find the (d-1)-dimensional perpendicular bisecting hyperplane for
every pair (X;,Y;)
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2.Methodology: MWSR test

1.

Find the (d-1)-dimensional perpendicular bisecting hyperplane for
every pair (X;,Y;)
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2.Methodology: MWSR test

1.

Find the (d-1)-dimensional perpendicular bisecting hyperplane for
every pair (X;,Y;)
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2.Methodology: MWSR test

1.  Find the (d-1)-dimensional perpendicular bisecting hyperplane for

. \
every pair (X;,Y;) . Voo
\
.« . o fe A . \ \
2.  Aggregate these decisions to a classifier C* in a Hodges-Lehmann sense L AN \
A% . . pe \ | o
(C* pseudomedian classifier) e N o i o o
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2.Methodology: MWSR test

1.  Find the (d-1)-dimensional perpendicular bisecting hyperplane for

H \
every pair (X;,Y;) . L
\
o .o A . \ \
2.  Aggregate these decisions to a classifier C* in a Hodges-Lehmann sense L AN \
A . oo \
(C* pseudomedian classifier) ~ \ Ve %
\\\ \\ (o] \
. . \\\ \S \
3. Score all instances Sy, Sy (1-D representation) N L@ ° .
\\\ 1 (o) (o]
. . * * ° o\§ \ o
4.  Apply Wilcoxon Sign Rank WSR(Sy, Sy) « © \
o \\ \\ y O
lo) o) (o) 8 \\ \93 (o)
© o ° 8 \‘ o\“\\\x
Outputs: o A PN
(o] \\o \ \\\
. o ° o o\ \ N
1. p-value, size effect o A N
\‘ \‘ ‘
1
\
\

2. Feature importance index from C* coefficients.




2.Methodology: M\WSR algorithm

Algorithm 1 The MWSR paired-sample testing framework

Input: XY ERNXf are the 2- N paired samples:
Output: C*. (S7. S3). p*-value, §*. I"

m First step: Compute a scoring

\
‘\
\\\ \ o
- - AN \
fori=1....N do N \ )
g ooy \ | o
('; «+— perpendicular_bisector(.X;,Y;) \\\ N\ o ‘\‘ o o
end for AN [
~ \
k< 1: M + On<nN \~\\\\\ % \‘ o) o o
y — N N 1
for:=1,..,N do o 0§ o
.. do Q °l
for j=i,..,N do R\ N ! o
Wok %(C»}- + ;) > the Walsh average of hyperplanes o © o © 9 X S
k+k+1 o o ° 8 \\\ o\‘\\x\
>
end for o \\ DI
end for o ] o o\‘o \ R
=5 . - . NS
C* < median(W¢) > the pseudomedian aggregate, see Eq. o \\ ‘\‘ L
ST, 5% +— get_scores(C*(X,Y)) © classification-based scoring Ny N
)
\
m Second step: Paired-sample test over the computed scores !
p*value, 8% < WSR(ST,53) > p-value and effect size
I «—w(C")

> feature importance index
return C*, (ST, S3). p*value, 0%, I*




2.Results: Synthetic dataset with progressive shift of mean.

Synthetic datasets
Synthetic data are simulated by pairing two samples coming

from two Gaussian distributions, with feature-wise correlation: o o
(X (F) y(k) o
cov(X (F) Y (k) _ .
Rxw ym = =0.5, (6) o o o
Tx(k)Ty (k) o % o o
- - . . °
where X(*)_ V' (5) are vectors representing the paired samples © o ° 6

with only the k-th feature, cov(-,-) is their covariance, and
T x (k) Ty (k) are the respective standard deviations. To produce
the dataset for each scenarieswe-sel
« a fixed population size. N = 30 pairs pf data instances;
« the dimensions/d={10,20,30,60} mimicking the number
of features that @ usudl study 1idy have;
« a standard deviatior std={1,2};

O@OO@IOGINO GIIbAD® @O
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(o]

o

(e )
o
oo

o the first 90% of the dimensions to have no statistical O O G OWO® W OO @O0 O O o
difference between the two samples, and hence to be
randomly drawn (separately) from N(0, std):

e the last 10% fof the dimensions to present the same

airtierence m mean value, hence producing a linear shift. Comparison between:
We allow this shift to also increase progressively from 0 to
1 to investigate the detectipn.sansitivity of the methods.. ° MWSR
Given a scenario, we generate 20 cases and apply all statistical
tests. We report the average performance, namely the percentage o Mu |t|p|e Testing (MT) with Bonferroni
of cases with a significant shift obtained by each statistical .
test, as a function of the size of the shift (referred to as adJUStment
average difference in the figures). Moreover, we provide results .
regarding the inferred feature importance. Both elements should ° Hotelllng T2 test (HTZ)

be examined jointly to validate the acquired results further.



3. Results: Effect of dimensionality and variance
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The performance is presented as a function of the separation distance between the two distributions. On the x-axis the
progressive difference in the mean value for the 10% of the dimensions (D) while on the y-axis it appears the % of
significant results detected by each method.
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3. Results: Feature « importance » index

Dimensions: 60, M:30, Variables std: 1

0.10- x1

0.08 IIIIIIII x30

Stacked Average & of every Feature

0.06 - '
I mm x54
0.04 - E x55
m x56
x57
002
-':l|||I|||IIIIII o
= E x59
000+
.= = <60
T T T 1T T 1™ 1 1T "1’ "7 "“"1T° "7 "7 1T T T T "T "1 1T "1
eg-QdnMduMUuEITONOLVYOaRORERGR O
O e P e P s e s s s
Average Difference

The relative feature importance for MWSR per feature. The feature importance performance is presented
as a function of the separation distance between the two distributions (average difference on x-axis).




Conclusions/Perspectives

Conclusions
\
1. MWSR outperforms the classical multivariate approaches \ \ o
. . . . \
(Hotelling T2 test, the multiple testing with p-value N \\ \
adjustment) in our experiments. oo \ o ‘\ o %
\s\\ \ “
2. MWSR is generally simple understandable \b{\ ? © o
\\\\ 1 (o) (o]
3. MWSR allows the user to interpret the actual contribution of R..9 \& ol ©
every feature to the final result. o o \\\\ o‘\‘ °
o o 8 \ N
4. MWSR is customizable with more sophisticated approches ° o © ) \\\ 0\7\\ Sao
(o} S \ \\\s
Perspectives o o o g\? \ 33
o AN \ N
1. Extension of framework to non-linear deformations N N
1
\
\

2. Extension of framework to more than one pair (E.G. repeated
measures)



3. Results: Real Dataset

Real dataset

We extend our empirical validation by employing a typical real
clinical dataset, with a relatively low population and multiple
features. It concerns posturographic assessment for subjects
with Parkinson’s syndrome (PS). This dataset, imtially used in
[3]. includes 30 subjects (inean age: 79.6+4.4 years) from the
Neurology department ol the HIA, Percy hospital in Clamart,
France, who were diagnosed with PS. The subjects underwent
a posturography assessment using a force platform/ (here a
Wii Balance Board (Nintendo, Kyoto, Japan)) that capiures
the trajectory of the center of pressure (CoP) exerted by the
entire body over time when an individual stands on them.
The assessment comprises two examinations with a 6-month
difference in time, which are the paired samples we use in our
experiment. Each time their postural stability was recorded for
25 seconds while maintaining an upright position on a force
platform with eyes open.

To characterize subjects’ postural control, the dataset pro-
vide! 16 features 'hat had been previously proposed as indica-
tors OI postural stability [20]. In detail: Percentiles (95% and
5%) (cm), Range (cm), Variance (cm?), Mean Instant Velocily
(cm/s), Acceleration (cm/s?) and Frequency (Hz) below which
95% of the signal energy is found, for both X-medio-lateral
(ML) and Y-antero-posterior (AP) axes, confidence ellipse area
(cm?) that covers the 95% of the points of the trajectory and
the angular deviation (in degrees®).



3. Results: Real Dataset

MT MWSR
AngularDeviation AngularDeviation {1  INNINGERERE
: EllArea W palues : EllArea - —
Fa 5y Fa5Y - ]
Accelerationy Acceleration |
VelocibyY Velocity - [
VarianceY VarianceY - ]
9 Miny 9 MinY - [
E M axy E M axy - [
= RangeY - RangeY - I
i Fas5x i Fa5X - I
AccelerationX AccelerationX - [ |
VelocityX VelocityX - I
VarianceX VarianceX - I
Il Pl |
MaxX Max B Coefficients (1) ]
Ra rmx I T T T T Ra ﬁg&x | T T T F T T
0.0 0.2 0.4 0.6 0.8 =0.10 =008 =006 =0.04 =002 000 0.02 0.04
p-values Coefficients (W)

The relative importance of each feature as indicated by MT and MWSR on the posturographic dataset
(D = 16 features)
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Proof (Hodges-Lehmann estimator and WSR statistic association)

Proof: Suppose we have continuous data Z = (Z4, ..., Z,), assumed to be symmetric around the mean u. We consider the hypothesis
Hy: pg = p. The signed rank statistic is:

n
TY@) = ) s@)R (1
Where s(Z;) = 1(Z1 > o) =
And R; is the rank of |Z; — uol in {|Z1 — uol, .-, 125 — ,uol};lThat is,
R = > 1(|2) - o] <12 — wol) (2)
j=1

Now , from (1), (2)
n n n n n
V@) = ) RuZi> ) = ) ) 12— o <120 = ol Ze > 0) = > Y 112 — ol < Zi = 10,2 > o)
i=1 i=1 j=1 i=1 j=1

= i Zn: 1(12 = wol < Zi—po) (3)
i=1 j=

We can remove dependence on the Z1 > #o as the remaining indicator function wiII return zero if Z; < pg. From (3),

T+(Z)—Z ZH(“O Zi<Zi—py <Zi—Uo) = zZH(2u0<Z+Z < 2Z;)

Tl n

Z+ 2 Z+ 2
ZH >,LLO,Z'SZL' = Z I > = Ug

j=1

i



