A frameworkfor pairedsample hypothesis testing
for high-dimensional data

loannisBargiotas ArgyrisKalogeratos NicolasvVayatis
Centre Borelli, ENBaris Saclay
6 Nov2023

loannis.Bargiotas@ ermarissaclay.fr

ICTAI (2023)-8 November 2023

école
normale
supérieure

EE",’;TEEE, paris—saclay

I. ]
universite
PARIS-SACLAY



mailto:Ioannis.Bargiotas@ens-paris-saclay.fr

1.BackgroundCommonPairedSampleSetting

Definition: Paired data is wheraatural matching or couplings
possible. Every data point in one sample would be paired
uniquelyt to a data point in another sample.

o
o
8
o
o o ° "o
g o o 08
o

O O G OMWO™ Gmd @OO oo O O o




1.BackgroundCommonPairedSampleSetting

Definition: Paired data is wheraatural matching or couplings

possible Everydata point in onesamplewould be paired ) .
uniquelyt to a data point iranothersample E . o
e.g. Sequentianeasurementsgre-treatment/post-treatment). g 0 ° o 0 e %
o o 8 (o}
: o 8 &,°

Group of Patients

Before After




1.BackgroundCommonPractices irvariousfields

A ForOn 4
A Use of Univariate hypothesis tests such dssTs
(parametric) or rank statistics (ngrarametric).
A ForOnv a h) QQD Qp
A Use ofmultivariate hypothesis tests such &otelling
T2test (HT2) or,

A (Most of the timeg independent consecutive
univariate hypothesis tests, @lse Multipletesting
(MT)
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1.BackgroundMultiple Testing(MT) workflow

A Multiple features

A Multiple univariatetesting (Parametric/Non parametric)

A p-value calculation per feature o o

A p-values adjustment (or nd?)y e s o %

A Report E o‘;f:ooo o
A Are thegroupsstatisticallydifferent? g 0 ° 0 0, £ %
A Inwhich dimension (feature) ? : °® o ¢ i o

*Multiple hypothesis testing increasdise likelihood of observing a significant result
purely bychance (Type | errorJo counteract this inflation of false positives, p
values are adjusted usiriglsediscovery rate(FDR) ofamily wise error rate
(FWERgontrol methods (e.g. Bonferroni) tanaintain a desired overall significance
level.



1.Motivation: p-valuedebateX d®d¢ 2 | R2dza U 2 NJ y 2 {

Debate | Open Access | Published: 17 June 2002

Do multiple outcome measures require p-value
adjustment?

nature > nature human behaviour > comment » article

Ronald J Feise

Comment ‘ Published: 01 September 2017

Redefine statistical significance

BMC Medical Research Methodology 2, Article number: 8 (2002) | Cite this article

67k Accesses | 759 Citations | 9 Altmetric | Metrics

Daniel J. Benjamin &, James O Berger, ... Valen E. Johnson =+ Show authors

Summary
Nature Human Behaviour 2, 6-10 (2018) ‘ Cite this article

Readers should balance a study's statistical significance with the magnitude of effect, the
. . . . . . 149k Accesses ‘ 1158 Citations ‘ 885 Altmetric ‘ Metrics
quality of the study and with findings from other studies. Researchers facing multiple outcome ———

measures might want to either select a primary outcome measure or use a global assessment
measure, rather than adjusting the p-value. We propose to change the default P-value threshold for statistical significance from 0.05

to 0.005 for claims of new discoveries.

BMJ
@ https:/fwww bmj com » content 3 The lack of reproducibility of scientific studies has caused growing concern over the

credibility of claims of new discoveries based on ‘statistically significant’ findings. There has

What's wrong with Bonferroni adjustments

been much progress toward documenting and addressing several causes of this lack of

by TV Perneger - 1998 - Cited by 6631 — This paper advances the view, widely held by reproducibility (for example, multiple testing, P-hacking, publication bias and under-
epidemiologists, that Bonferroni adjustments are, at best, unnecessary and, at worst,... powered studies). However, we believe that a leading cause of non-reproducibility has not yet

been adequately addressed: statistical standards of evidence for claiming new discoveries in

) . many fields of science are simply too low. Associating statistically significant findings with P <
When to use the B onferroni correction

RA Armstrong - Ophthalmic and Physiological Optics, 2014 - Wiley Online Library

Purpose The B onferroni correction adjusts probability (p) values because of the increased
risk of a type | error when making multiple statistical tests. The routine use of this test has .
¢ Save DY Cite Cited by 2666 Related articles All 6 versions




1.Motivation: Machine learning Framework for the twsample problem

Group of Data ARTICLE. FREE ACCESS ¥in& f
A kernel two-sample test

v v
Authors: Arthur Gretton, Karsten M. Borgwardt, Malte ). Rasch, Bernhard Scholkopf, \é/ Alexander Smola

Independent Paired/Matched Authors Info & Claims

l l Corpus ID: 2049706
v v

AUC optimization and the two-sample problem

The Journal of Machine Learning Research, Volume 13 e 3/1/2012 « pp 723-773

2 groups >2 groups >2 instances 2 instances
(M u|‘t|-C|aSS) (Longltudlna|) S. Clémencgon, N. Vayatis, M. Depecker + Published in NIPS 7 December 2009 = Computer Science
‘ l Classification accuracy as a proxy for two-
v v v .
'Unpa'red_T'tGSt -ANOVA -Repeated Measures ANOVA -Paired T-test (Parametric) sam ple teStlng
(Parametri¢ (Parametric) (Parametric) llmun Kim, Aaditya Ramdas, Aarti Singh, Larry Wasserman
_ -Signed rank Wilcoxon
-Mann—WhItney— -Kruskal-Wallis -Friedman test (Non- (Non-parametric) Ann. Statist. 49(1): 411-434 (February 2021). DOI: 10.1214/20-A051962
Wilcoxon (Non-parametric) parametric)
Norparametric : : :
(Nonp Two-sample Testing Using Deep Learning

Matthias Kirchler, Shahryar Khorasani, Marius Kloft, Christoph Lippert Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, PMLR 108:1387-1398, 2020.

Revealing posturographic Erofile of patients with
Parkinsonian syndromes through a novel hypothesis testing
framework based on machine learning

loannis Bargiotas [E, Argyris Kalogeratos, Myrto Limnios, Pierre-Paul Vidal, Damien Ricard, Nicolas Vayatis

Published: February 25, 2021 + https://doi.org/10.1371/journal.pone.0246790



1.Motivation: Machinelearning Framework for pairesamples?

Group of Data

\4 v
Independent Paired/Matched
l . !
2 groups >2 groups >2 instances ; 2 instances
‘ (Multi-class) (Longitudinall) ‘
|
\4 \/ v v
-Unpaired T-test -ANOVA -Repeated Measures ANOVA -PairedT-test (Parametri¢
(Parametric) (Parametric) (Parametric)
-Signedrank Wilcoxon

-IV!ann-Whitney- -Kruskal-Wallis -Friedman test (Non- 'Nonparametriq
Wilcoxon (Non-parametric) parametric)

(Non-parametric




1.Motivation: Machinelearning Framework for pairesamples?

Group of Data

! }
Independent Paired Matched
2 grou;as >2 groups >2 instances 2 insta'nces
(Multi-class) (Longitudinal)
| Qv I | | Objectives: Develop a test that:
-UnpairedT-test - - d -PairedT- i
(Parametrig Parametria PamaiyLTeSANOVA PairedTtest (Parametna A extendsthe useof a well known test
_ -Signedrank Wilcoxon I i I
-Mann-Whitney- -KruskatWallis -Friedman test (Non (Nonparametrig (\_/VIICOX_On Slgned rank@) hlgher
Wilcoxon (Nonparametrig parametrig dimensions

(Nornparametric

A Provide welknownoutputs p-values,
effect sizes, significant features

A is easyimplemented and understandable
from nonexperts

A a0 & LJ thedp8adué adjustment
discussion




2.Methodology: The 2step framework for the pairedample problem

1 . Step 1- ScoringA decision rule i& f S NFIRR ¢
specifica LIN2 LJ-andis¢ores the instances.

(Here theaggregation manner dfiodgesL.ehmann _ _ .
_ estimatorcalculation) Key point:The creation of the decision rule $tep 1should be

B linkedto the statistic of the applied test iStep 2

2 - Step2 - Testing A univariatetest is appliedto
producedscores.

~ (Herethe Wilcoxonsignrank (WSR) tegt




2.Methodology:Univariate Case(Hodges.ehmann and WSR)

WilcoxonSigned Rank (WSkst

For pairedXandY, WSR test can be transformed to One sample tasd, testsf Al
the medianGof ©&d @ & differences is significantly different frot |

Hp:0=0, the Z;’s are symmetric around 6 = 0;
H;:0#0, the Z;’s are symmetric around 6 # 0.

WSR ranks thigo | in ascending order, ignoring the signs and sums the ranks of the . | | | | |
positive differences (greater than zero) to Jét o o5 1 15 2 25 3

HodgesLehmann estimator

The effect size-betweenthe pairedsamplesjs estimated by thgpseudomediarof
the differences, which is in turn estimated by the Hodgebmann estimator

o R {0 Vo Key point 1:Supposing there are no ties and no
V(W — aQQQREL wNQ Q pBH v p A .
(0() f{c i P } zeros among theoQ a > nurlderSf positive Wals
_ o _ averages\(V*) is equal tathe WSHRstatisticT*
Therefore, as the median of thmairwiseaverage differencesr else theWalsh (Hoyland A. Robustness of the Hodgeshmann estimates for shift.
Averages (\/)/ Annals of Math. Stat., 36(1):1q497, 1965



2.Methodology:From 1Dto d-D

Multidimensional extension: .
. - . . . L e — mmee distance
1. The multidimensional Euclidean distartmetween two paired —rule,
instances( and®, canbe seen asnanalogy to thalifference =3 s 6 l‘i’ﬁ’éi”“e"
@ ® ® inaunidimensional setup. distance,

rule,
e Pseudomedian

2. Eachseparating rule associated withmidpointof the 1-D case, B)
now becomes & R )kdimensional perpendiculabisecting
hyperplane

3. Eachsuch hyperplane is computed by takimgo accountonly 4
one specific pair of instanceyet it splitsthe spacean two
parts, and therefore it can be seen adexcision rulethat could
hopefully classify the data in two parthe @ and the®part.

L 4
= I
------ distance,
m——r)]e,
------ distance,
i,
distance,
rule;
sz 2udomedian




2.Methodology: MWSR test

1. Find the(dbl)-dimensional perpendicular bisecting hyperplarfer
every pair ®hw
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2.Methodology: MWSR test

1.

Find the(dbl)-dimensional perpendicular bisecting hyperplarfer
every pair ®hw
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2.Methodology: MWSR test

1.

Find the(dbl)-dimensional perpendicular bisecting hyperplarfer
every pair ®hw
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2.Methodology: MWSR test

1. Find the(dBl);g!imensionaI perpendicular bisecting hyperplarfer

every pair ®hw § ‘\‘ .
2. Aggregatahese decisions to elassified” in aHodgesLehmanrsense N \ '\\
(6° pseudomediarclassifier) . \\ o ‘o %
\\‘t \\ ? “\‘o o
Q \6*\& o“\ ° o °
o % o © o8 \\ \% o




2.Methodology: MWSR test

1. Find the(dbl)-dimensional perpendicular bisecting hyperplarfer
every pair ®hw

2. Aggregate these decisions to a classifierin aHodgesLehmann sense N N ‘\\

v Z - . g
(0" pseudomediarclassifier) \\ . o %
. o o . S \
Score all instance¥, "Y (1-Drepresentation) =N N8 0
\\\ 1 (o) (o]
. . : 0 6
ApplyWilcoxon Sign Rank WSR("Y) © \& ol °
\\ “ lo)
P ° © ° 08 \\ \gsr ©
© o 8 \ O\\\\x
Outputs: o ° N O
\ e
. o o o o‘\ N,
1. p-value, size effect o N\ N

2.  Featureimportanceindex from 6° coefficients.




2.Methodology: MWSR algorithm

Algorithm 1 The MWSR paired-sample testing framework

Input: XY ERNXf are the 2- N paired samples:
Output: C*. (S7. S3). p*-value, §*. I"

m First step: Compute a scoring

\
‘\
\\\ \ o
- - AN \
fori=1....N do N \ )
g ooy \ | o
('; «+— perpendicular_bisector(.X;,Y;) \\\ N\ o ‘\‘ o o
end for AN [
~ \
k< 1: M + On<nN \~\\\\\ % \‘ o) o o
y — N N 1
for:=1,..,N do o 0§ o
.. do Q °l
for j=i,..,N do R\ N ! o
Wok %(C»}- + ;) > the Walsh average of hyperplanes o © o © 9 X S
k+k+1 o o ° 8 \\\ o\‘\\x\
>
end for o \\ DI
end for o ] o o\‘o \ R
=5 . - . NS
C* < median(W¢) > the pseudomedian aggregate, see Eq. o \\ ‘\‘ L
ST, 5% +— get_scores(C*(X,Y)) © classification-based scoring Ny N
)
\
m Second step: Paired-sample test over the computed scores !
p*value, 8% < WSR(ST,53) > p-value and effect size
I «—w(C")

> feature importance index
return C*, (ST, S3). p*value, 0%, I*




2.ResultsSyntheticdatasetwith progressive shift oinean

Synthetic datasets
Synthetic data are simulated by pairing two samples coming

from two Gaussian distributions, with feature-wise correlation: o o
(X (F) y(k) o
cov(X (F) Y (k) _ .
Rxw ym = =0.5, (6) o o o
Tx(k)Ty (k) o % o o
- - . . °
where X(*)_ V' (5) are vectors representing the paired samples © o ° 6

with only the k-th feature, cov(-,-) is their covariance, and
T x (k) Ty (k) are the respective standard deviations. To produce
the dataset for each scenarieswe-sel
« a fixed population size. N = 30 pairs pf data instances;
« the dimensions/d={10,20,30,60} mimicking the number
of features that @ usudl study 1idy have;
« a standard deviatior std={1,2};

O@OO@IOGINO GIIbAD® @O
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o the first 90% of the dimensions to have no statistical O O G OWO® W OO @O0 O O o
difference between the two samples, and hence to be
randomly drawn (separately) from N(0, std):

e the last 10% fof the dimensions to present the same

airtierence m mean value, hence producing a linear shift. Comparison between:
We allow this shift to also increase progressively from 0 to
1 to investigate the detectipn.sansitivity of the methods.. A MWSR
Given a scenario, we generate 20 cases and apply all statistical
tests. We report the average performance, namely the percentage A M u|t|p|e Testing (MT) with Bonferroni
of cases with a significant shift obtained by each statistical )
test, as a function of the size of the shift (referred to as ad]UStment
average difference in the figures). Moreover, we provide results )
regarding the inferred feature importance. Both elements should A HOtelllngTZ test (HT2)

be examined jointly to validate the acquired results further.



3. Results Effectof dimensionalityand variance
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Theperformanceis presentedasa function of the separationdistancebetweenthe two distributions On the x-axisthe
progressivalifferencein the meanvaluefor the 10% of thalimensiongD) while on the y-axisit appearsthe % of
significantresultsdetectedby eachmethod.
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3. Results Feature« importance» index

Dimensions: 60, M:30, Variables std: 1
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Therelativefeatureimportancefor MWSR pefeature. Thefeature importanceperformanceis presented
asafunction of the separationdistancebetweenthe two distributions(averagedifferenceon x-axis.




Conclusions/Perspectives

Conclusions
1. MWSR outperformshe classical multivariatapproaches \ Voo
(HotellingT?2 test, the multipldesting withp-value N ‘\ \
adjustment) in our experiments. ~ \ \ o o
\\\\ \\ (o) “
MWSRs generallysimple understandable \\§ N @ © o
\\~\\ \“ o o
3. MWSR allowthe userto interpret the actual contribution of R..9 \& o) ©
every feature to thdinal result o o AN o °
o o 8 \ \4“
4. MWSR is customizable with more sophisticagggroches ° ° 8 0\\\\
. ° o \ (o) S
Perspectives o © o o S
o 3 \

1. Extensiomf framework to nonlinear deformations

2. Extension of framework to more than one pair (E.G. repeated
measures)



3. Results RealDataset

Real dataset

We extend our empirical validation by employing a typical real
clinical dataset, with a relatively low population and multiple
features. It concerns posturographic assessment for subjects
with Parkinson’s syndrome (PS). This dataset, imtially used in
[3]. includes 30 subjects (inean age: 79.6+4.4 years) from the




