Dynamic Treatment Allocation for Epidemic Control in Arbitrary Networks

Kevin Scaman, Argyris Kalogeratos and Nicolas Vayatis

Ecole Normale Supérieure de Cachan, France

DiffNet workshop - WSDM 2014

Static resource allocation

- We would like to control an epidemic using treatments or antidotes
- We have a limited budget of treatments to distribute in the network
- How should we distribute it?

Dynamic resource allocation

- We would like to control an epidemic using treatments or antidotes
- We have a limited budget of treatments to distribute in the network
- What if we observe the epidemic and can readjust our strategy in real-time?

Dynamic resource allocation

- SIS epidemic model
- Markov process modeling of the epidemic

Vaccination strategies

- Give priority to central nodes
- Variety of different centrality measures
- Works well for static problems...
- ...but not suited to dynamic strategies!

- Largest Reduction in Infectious Edges
- Focuses on the most viral and safe nodes
- Gradually removes the epidemic from the network by reducing the scattering of the infected nodes

- Largest Reduction in Infectious Edges
- Focuses on the most viral and safe nodes
- Gradually removes the epidemic from the network by reducing the scattering of the infected nodes

- Largest Reduction in Infectious Edges
- Focuses on the most viral and safe nodes
- Gradually removes the epidemic from the network by reducing the scattering of the infected nodes

- Largest Reduction in Infectious Edges
- Focuses on the most viral and safe nodes
- Gradually removes the epidemic from the network by reducing the scattering of the infected nodes

- Largest Reduction in Infectious Edges
- Focuses on the most viral and safe nodes
- Gradually removes the epidemic from the network by reducing the scattering of the infected nodes

- Largest Reduction in Infectious Edges
- Focuses on the most viral and safe nodes
- Gradually removes the epidemic from the network by reducing the scattering of the infected nodes

Our contribution

Analysis of the problem

- Clear and general formulation of dynamic treatment allocation
- Experimental testing of several heuristics

Interesting results and findings

- Novel heuristic outperforming other competing strategies (LRIE)
- Centrality-based strategies can be counter-effective under certain parameter settings

Model formulation

N-intertwined SIS model

$$X_i(t) = \left\{ \begin{array}{ll} 0 \to 1 & \text{at rate } \beta \sum_j A_{ij} X_j(t) \\ 1 \to 0 & \text{at rate } \delta + \rho M_i(t) \end{array} \right.$$

- A is the adjacency matrix of the undirected network
- X(t) is the node's state vector
- M(t) is the treatment vector
- β , δ and ρ are respectively the virus infection rate, the self recovery rate, and the additional recovery rate when treated
- Similar to heterogeneous N-intertwined SIS model, but δ_i is restricted to $\{\delta, \delta + \rho\}$

General definition

- In the most general setting, M(t) is a stochastic process...
- ... adapted to the natural filtration associated to X(t) (i.e. M(t) depends only on **past values** of X(t))
- We also limit the number of available treatments at each time step by a budjet b(t):

$$M: \mathbb{R}_+ \to \{0, 1\}^N$$

$$s.t. \ \forall t \in \mathbb{R}_+, \quad \sum_i M_i(t) \le b(t)$$

Simplification

- This is a very general setting
- We can **simplify it** if $b(t) = b_{tot}$ is constant

Score-based strategies

- ullet Dynamic strategies can be written as a selection procedure of b_{tot} nodes in the network
- \bullet A strategy can be defined by a score S(X(t)) which depends on the current infection state X(t)
- Since treatments have an effect only on infected nodes, we restrict ourselves to strategies which only give treatments to infected nodes

Competing heuristics	
Strategy	Score $S_i(X)$
Random (RAND)	R_i uniform in $[0, 1]$
Most Neighbors (MN)	$\sum_{i} A_{ij}$
Page Rank Centrality (PRC)	
Largest Reduction in Spectral Radius (LRSR)	$\lambda_1 - \lambda_1^{G \setminus i}$

Competing heuristics	
Strategy	Score $S_i(X)$
Random (RAND)	R_i uniform in $[0, 1]$
Most Neighbors (MN)	$\sum_{i} A_{ij}$
Page Rank Centrality (PRC)	P_i PageRank score
Largest Reduction in Spectral Radius (LRSR)	$\lambda_1 - \lambda_1^{G \setminus i}$
Most Susceptible Neighbors (MSN)	$\sum_{i} A_{ij}(1-X_j)$
Least Infected Neighbors (LIN)	$\begin{vmatrix} \sum_{j} A_{ij} (1 - X_j) \\ -\sum_{j} A_{ij} X_j \end{vmatrix}$

Competing heuristics	
Strategy	Score $S_i(X)$
Random (RAND)	R_i uniform in $[0, 1]$
Most Neighbors (MN)	$\sum_{i} A_{ij}$
Page Rank Centrality (PRC)	P_i PageRank score
Largest Reduction in Spectral Radius (LRSR)	$\lambda_1 - \lambda_1^{G \setminus i}$
Most Susceptible Neighbors (MSN)	$\sum_{j} A_{ij}(1-X_j)$
Least Infected Neighbors (LIN)	$-\sum_{j} A_{ij}X_{j}$
Largest Reduction in Infectious Edges(LRIE)	$\sum_{i} A_{ij} (1-2X_j)$

Competing heuristics	
Strategy	Score $S_i(X)$
Random (RAND)	R_i uniform in $[0, 1]$
Most Neighbors (MN)	$\sum_{i} A_{ij}$
Page Rank Centrality (PRC)	P_i PageRank score
Largest Reduction in Spectral Radius (LRSR)	$\lambda_1 - \lambda_1^{G \setminus i}$
Most Susceptible Neighbors (MSN)	$\sum_{j} A_{ij} (1-X_j)$
Least Infected Neighbors (LIN)	$-\sum_{j} A_{ij}X_{j}$
Largest Reduction in Infectious Edges(LRIE)	$\sum_{j} A_{ij} (1-2X_j)$

The proposed LRIE

- Focuses on the most viral and safe nodes
- Targets nodes whose healing would minimize the number of infectious edges, i.e. edges between infected and susceptible nodes

Networks used for our experimental results

- Erdös-Rényi random networks
- Preferential-attachment random networks
- US air traffic network

And different settings

- Wide range of parameter values (β and ρ)
- Different initial infection level (%)

- $N=10^4$ nodes, p=0.001
- $\beta/\delta = \{2, 2, 0.2\}$, $\rho/\delta = \{4000, 3000, 5\}$, $b_{tot} = \{10, 10, 200\}$
- LRIE outperform other competing heuristics
- For high initial infection size, centrality-based heuristics can become counter-effective

Preferential attachment random networks

- $N=10^4$ nodes, m=5
- $\beta/\delta=2$, $\rho/\delta=\{4000,3000\}$, $b_{tot}=10$
- Similar results to Erdös-Rényi random networks

US air traffic network

- N=1574 nodes, $\beta/\delta=2$, $\rho/\delta=600$, $b_{tot}=10$ medicines.
- Real US air traffic network for the year 2010.
- Large difference between the competing strategies.
- Persistence of the epidemic at low rates, which is typical of scale-free networks.

Conclusion

- General formulation for the dynamic treatment allocation problem
- LRIE strategy is robust to various settings in terms of networks types and initial infection levels, and outperforms other baseline strategies
- In certain scenarios, centrality-based heuristics can be counter-effective

Future work

LRIE limitations

- Ignores complex network structure: it ranks the nodes by considering only their first-order node relations (neighborhoods)
- Inability for coordinated actions: it ranks the nodes independently

Future work directions

- Theoretical analysis of LRIE and dynamic treatment allocation
- Partial information settings

Any questions?

Thank you for your attention!

Example on a toy network

- The red nodes are infected, the dashed edges are infectious
- Node h is the most central
- Node e and d are the most viral
- Node e is the safest