IMPROVING TEXT STREAM CLUSTERING USING TERM BURSTINESS AND CO-BURSTINESS

Argyris Kalogeratos Joint work with:

Panagiotis Zagorisios and Aristidis Likas

OUTLINE

- Preliminaries
- Related Work
- The proposed CBTC method
- Experiments
- Conclusion

PRELIMINARIES Text Clustering

- Input: a static collection of text documents
- Target: thematic segmentation into sufficiently different groups containing similar documents
- Representation: usually in the vector space model (VSM)
 - Term-document vectors in Bag-of-Words (TFIDF-BOW) model:

$$d_i = [d_{i1}, ..., d_{iV}]^{\top} = [tf_{i1} \cdot idf_1, ..., tf_{iV} \cdot idf_V]^{\top}$$

- Challenges
 - Curse of dimensionality & high sparsity
 - Language phenomena: polysemy, synonymy, homonymy, complex semantics, etc.

PRELIMINARIES

Text stream clustering

- Input: a stream of documents published over time
- Target: identification of document clusters referring to the same real-life topic (or set of events)
- Representation: using the document vectors + timestamps
 - A stream of T batches:

$$S = [s_1, ..., s_T]$$

- Challenges
 - Conventional clustering neglects the timestamp information
 - Added complexity How to combine content and temporal proximity between documents?
 - Feature-based vs. <u>document-based topic representation</u>
 - Online vs. offline processing

Content hierarchy

Stream example

The standard recipe

A. Make semantically richer VSM

- Temporal information is seek into the distribution of terms over time
 - Term burst: a rapid increase in term's occurrence rate
- Re-weight the vectors favoring bursty terms

VSM bursty VSM
$$X \rightarrow XB$$

B. Use traditional clustering algorithms

e.g. hierarchical agglomerative or k-means

Term bursts in stream

Burst detection: the popular Kleinberg's two-state automaton

Stream: $S = [s_1, ..., s_T]$

Find the sequence $(q_1...q_T)$ of states for term jby minimize the cost to be at state i:

$$\sigma(i, |s_{tj}|, |s_t|) = -\ln \left[\binom{|s_t|}{|s_{tj}|} p_i^{|s_{tj}|} (1 - p_i)^{|s_t| - |s_{tj}|} \right]$$

Output a burst weight for term
$$j$$
:
$$w_j^{[t_1,\,t_2]} = \sum_{t=t_1}^{t_2} (\sigma(0,|s_{tj}|,|s_t|) - \sigma(1,|s_{tj}|,|s_t|))$$

- Statistically simple and popular
- Difficult to tune the parameters: lpha and γ , but not cheap computationally

Existing burst-based approaches (1)

Term bursts in stream

B-VSM:
$$d_{ij}^{(t)} = \begin{cases} \mathbb{1}\{tf_{ij} > 0\} + \delta w_j^{(t)}, & \text{if } t \in \tau_j \\ \mathbb{1}\{tf_{ij} > 0\}, & \text{otherwise} \end{cases}$$

SAB:
$$d_{ij}^{(t)} = \begin{cases} tfidf_{ij} + \overline{w}_j^{(t)}, & \text{if } f_j \in \mathcal{B} \\ tfidf_{ij}, & \text{otherwise} \end{cases}$$

SMB:
$$d_{ij}^{(t)} = \begin{cases} tfidf_{ij} \cdot w_j^{(t)}, & \text{if } f_j \in \mathcal{B} \\ tfidf_{ij}, & \text{otherwise} \end{cases}$$

BAB:
$$d_{ij}^{(t)} = t f i d f_{ij} + \overline{w}_{j}^{(t)}$$

BMB:
$$d_{ij}^{(t)} = t f i d f_{ij} \cdot w_j^{(t)}$$

BT:
$$d_{ij}^{(t)} = tfidf_{ij}$$

[He et al. 2007a]

[He et al. 2007b]

Existing burst-based approaches (2)

Burst-VSM: $d_{ij}^{(t)} = \begin{cases} tfidf_{ij}, & \text{if } t \in \tau_j \\ 0, & \text{otherwise} \end{cases}$ [Zhao et al. 2012]

Employed B-VSM: $d_{ij}^{(t)} = \begin{cases} tfidf_{ij} \cdot w_j^{(t)}, & \text{if } t \in \tau_j \\ tfidf_{ij}, & \text{otherwise} \end{cases}$

OUR CONTRIBUTION

A. Exploiting term burstiness and... co-burstiness

- If documents containing the same term during one of its burst periods, this is an indication that they are part of the same event/topic
- But there is more happening in a stream...

OUR CONTRIBUTION

B. Exploiting space duality

Our direction of work

- Capitalizing on the duality between feature and document space
- Bursty terms could indicate the most representative documents for their topic

Proposed CBTC method

- Step 1: Create k' > k groups of bursty terms
- Step 2: Construct the k' synthetic cluster prototypes [Kalogeratos et al. 2011]
- Step 3: Apply agglomerative k-sp $k' \rightarrow k$ clusters
- Step 4: Deterministic initialization of spherical k-means with the k produced prototypes

Proposed method (1)

- Step 1: Create k' > k groups of bursty terms
 - **a)** Construct the novel **bursty term correlation graph** (B nodes)

Co-occurrence
in documents
during burst periods Co-burstiness

$$a_{ij} = \begin{cases} \frac{1}{2} \left(\frac{|D_i \cap D_j|}{|D_i|} + \frac{|D_i \cap D_j|}{|D_j|} \right), & \text{if } h(D_i \cap D_j) \cap (\tau_i \cap \tau_j) \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$$

• b) Segment the graph with spectral clustering [Ng et al. 2002]

Proposed method (2)

- Step 1: Create k' > k groups of bursty terms
- Step 2: Construct the k' synthetic cluster prototypes [Kalogeratos et al. 2011]
 - For each term group, select the documents that contain at least one bursty term
 - Then, robust representatives are built with a subset of objects around the medoid
 - They favor the dominant class in a cluster
 - lacktriangle Two parameters: the percentage of cluster members to use, and an L_1 filter

Inhomogeneous cluster example

- medoid document
- documents of dominant class
- documents of some minority class or not core for the dominant class

selected for synthetic prototypes

Proposed method (3)

- Step 1: Create k' > k groups of bursty terms
- Step 2: Construct the k' synthetic cluster prototypes [Kalogeratos et al. 2011]
- Step 3: Apply agglomerative k-sp $k' \rightarrow k$ clusters
 - Merge the pair of nearest document clusters (recall: they correspond to term clusters)
 - Recompute the synthetic prototypes... repeat
 - Finally, produce k cluster prototypes

Proposed method (4)

- Step 1: Create k' > k groups of bursty terms
- Step 2: Construct the k' synthetic cluster prototypes [Kalogeratos et al. 2011]
- Step 3: Apply agglomerative k-sp $k' \rightarrow k$ clusters
- Step 4: Deterministic initialization of spherical k-means with the k produced prototypes
 - This algorithm uses cosine similarity and maximizes the clustering cohesion [Dhillon et al. 2001]

$$Cohesion(C) = \sum_{j=1}^{k} \sum_{d_i \in c_j} r_j^{\top} d_i$$

VSM or B-VSM could be used for this final clustering

EXPERIMENTS

Datasets and setup (1)

- 5 datasets of moderate and small size
- Standard preprocessing with TMG toolkit [Zeimpekis et al. 2006]

-	Text characteristics					Stream characteristics				
	Name	Classes	N	Balance	V	$\overline{V_i}$	T	B	$ s_i $	H_s
20Newsgroups	D1	10	1000	1	2352	45.89	30	354	33.3	3.030 ± 0.918
	D2	10	1000	1	2310	44.54	30	381	33.3	3.030 ± 0.918
Reuters-21578 TDT5 GoogleNews	D3	10	993	0.93	1566	44.16	30	350	33.1	3.028 ± 0.831
	D4	30	4972	0.06	4717	21.54	183	4020	23.8	2.053 ± 0.581
	D5	11	268	0.43	1298	59.07	31	400	8.6	0.237 ± 0.543

⁻N denotes the number of documents, *Balance* the ratio of the smallest to the largest class, V the size of the vocabulary, and \overline{V}_i the average document vocabulary size.

⁻T is the number of time windows, B the number of bursty terms, $|s_i|$ the average number of documents per window, and H_S the temporal topic entropy.

EXPERIMENTS

Datasets and setup (2)

- We used the original timelines for D4 and D5
- Artificially generated timelines for (D1-D2) and D3
 - Though respecting the original document ordering provided
 - This way we can adjust "stream complexity"

Parameters for stream generation (timestamps)

Parameter	Value / Selection range
T λ #bursts per topic %docs in bursts	$ \begin{array}{c} 30 \\ [0.2, 0.9] \\ \{1, 2\} \\ [0.7, 0.9] \end{array} $

(b) Generated stream for D3 dataset

(c) Original stream for D5 dataset

RESULTS

RandInit vs. CBTC (100 restarts)

VSM vs. B-VSM

Results with initializations of spherical k-means

	VSM representation (X)				B-VSM representation (XB)				
Dataset		$Purity {\uparrow}$	$F1$ \uparrow	NMI ↑		$Purity {\uparrow}$	$F1$ \uparrow	NMI ↑	
D1	X (avg.)	0.419	0.423	0.365	XB (avg.)	0.444	0.479	0.410	
	(best)	0.510	0.524	0.457	(best)	0.562	0.573	0.490	
	X-3k	0.580	0.596	0.578	XB-3k	0.602	0.603	0.558	
	X-2k	$\boldsymbol{0.628}$	0.658	0.594	XB-2k	0.626	0.653	0.576	
D2	X (avg.)	0.503	0.515	0.439	XB (avg.)	0.508	0.546	0.451	
	(best)	0.571	0.580	0.491	(best)	0.611	0.622	0.535	
	X-3k	0.684	0.712	0.633	XB-3k	0.684	0.700	0.618	
	X-2k	0.714	0.714	0.619	XB-2k	0.711	0.730	0.628	
D3	X (avg.)	0.661	0.649	0.645	XB (avg.)	0.710	0.710	0.686	
	(best)	0.771	0.774	0.745	(best)	0.796	0.805	0.768	
	X-3k	0.719	0.744	0.703	XB-3k	0.751	0.759	0.745	
	X-2k	0.774	0.787	0.765	XB-2k	0.774	0.792	0.766	
D4	X (avg.)	0.500	0.457	0.545	XB (avg.)	0.518	0.473	0.584	
	(best)	0.564	0.511	0.587	(best)	0.614	0.556	0.641	
	X-3k	0.689	0.635	0.704	XB-3k	0.701	0.638	0.718	
	X-2k	0.678	0.622	0.712	XB-2k	0.688	0.625	0.722	
D5	X (avg.)	0.444	0.441	0.369	XB (avg.)	0.720	0.713	0.710	
	(best)	0.557	0.566	0.474	(best)	0.794	0.793	0.772	
	X-3k	0.716	0.742	0.650	XB-3k	0.828	0.837	0.791	
	X-2k	0.522	0.531	0.504	XB-2k	0.623	0.647	0.658	

CONCLUSION

- Discussed the text stream clustering problem
- Pointed out certain limitations in related work
- Developed the CBTC method
 - Uses efficiently the term burstiness and co-burstiness information
 - Capitalizes on the duality of feature and document spaces
 - Provides good quality deterministic initialization for standard clustering methods
- Presented experiments on real data (+ artificial timelines)
- Future work
 - experimentation in larger datasets
 - parameter tuning

QUESTIONS

Thank you!

APPENDIX 1/6

$$H_S = \frac{1}{T} \sum_{t=1}^{T} \left[-\sum_{i} \frac{n(C_i^{*t})}{N^t} \cdot log_2 \frac{n(C_i^{*t})}{N^t} \right]$$

APPENDIX 2/6

Algorithm 1 Initialization of spk-means with the CBTC.

```
function CBTC (\hat{X}, p_{docs}, p_{terms}, k, k', A)
                   \hat{X} is the document matrix with row vectors,
    input:
                   \boldsymbol{p}_{docs},\,\boldsymbol{p}_{terms} are parameters for the synthetic
                    prototype construction, k and k' the starting
                    and desired number of clusters (k' \geq k), and A the
                   bursty term correlation matrix
  output: R = \{r_1, ..., r_k\} the set of final cluster prototypes,
                   C = \{c_1, ..., c_k\} the sets of documents assigned
                   to each cluster
\begin{array}{ll} 1: \ C^{(f)} \leftarrow \texttt{SegmentTermGraph} \ (A, \ k') & // \ \text{see Alg.} \ 2 \\ 2: \ \{SP, \ C^{(b)}\} \leftarrow \texttt{ConstructBurstySP} \ (C^{(f)}, \ \hat{X}, \ p_{docs}, \ p_{terms}) \\ \end{array}
                                                                     // see Alg. 3
 3:~\{\mathit{SP}\} \leftarrow \texttt{MergeClusters}\left(C^{(b)},\,\mathit{SP},\,k,\,p_{docs},\,p_{terms}\right)
                                                                            // see Alg. 4
 4: \{R, C\} \leftarrow \text{spkmeans}(SP, \hat{X}, k)
                                                                          // see Sec. 2.1
 5: return (R, C)
```

APPENDIX 3/6

Algorithm 2 Segmentation procedure on the bursty terms.

function SegmentTermGraph (A, k')

input: A is the bursty term correlation matrix,

k' the desired number of groups

output: $C^{(f)} = \{c_1^{(f)}, ..., c_{k'}^{(f)}\}$ the segmentation solution

with $k' \ge k$ groups of bursty terms

1: $C^{(f)} \leftarrow \text{SpectralClustering}(A, k')$

2: $C^{(f)} \leftarrow C^{(f)} \setminus \{ \bigcup c_i^{(f)}, \forall i \in [1, k'] \text{ s.t. } |c_i^{(f)}| < 2 \}$

3: return $(C^{(f)})$

APPENDIX 4/6

```
Algorithm 3 Construction of bursty synthetic prototypes.
\textbf{function ConstructBurstySP}\left(C^{(f)},\, \hat{X},\, p_{docs},\, p_{terms}\right)
   input: C^{(f)} is the segmentation of SegmentTermGraph(),
                \hat{X} the document matrix with row vectors.
                \boldsymbol{p}_{docs},\,\boldsymbol{p}_{terms} are the parameters for the synthetic
                prototype construction
 output: SP = \{sp_1, ..., sp_{k'}\} the set of synthetic prototypes,
                C^{(b)} = \{c_1^{(b)}, ..., c_{k'}^{(b)}\} the documents clusters
                corresponding to the groups of bursty terms C^{(f)}
       let: f_i the j-th term (here f_i \in \mathcal{B}),
                k' = |C^{(b)}| the number of clusters,
                D_i the set of documents containing the term f_i,
                \hat{X}_{Docs} the submatrix of \hat{X} with the rows
                that correspond to the documents in the set Docs,
                ConstructsP() constructs a synthetic prototype,
                AssignToClosest() assigns the documents of a set
                to the closest of the prototypes provided
 1: Docs_B \leftarrow \emptyset
 2: for i = 1...k'
 3:
          Docs \leftarrow \emptyset
         for each f_j \in c_i^{(f)}
                Docs \leftarrow Docs \cup D_i
          end for
         Docs_B \leftarrow Docs_B \cup Docs
         sp_i \leftarrow \texttt{ConstructSP}\left(\hat{X}_{Docs}, \, p_{docs}, \, p_{terms}\right)
 9: end for
10: C^{(b)} \leftarrow AssignToClosest(\hat{X}_{Docs}, SP)
11: return (SP, C^{(b)})
```

APPENDIX 5/6

Algorithm 4 Agglomerative cluster merging step.

```
\mathbf{function} \; \mathsf{MergeClusters} \, (C^{(b)}, \, \mathit{SP}, \, k, \, p_{docs}, \, p_{terms})
                  C^{(b)}, SP are the output of ConstructBurstySP(),
    input:
                  k is the final number of clusters to reduce set C^{(b)},
                  \boldsymbol{p}_{docs},\,\boldsymbol{p}_{terms} are for the S\!P construction
                  SP the synthetic cluster prototypes
  output:
                  ClosestPrototypes() that returns the indexes of
        \mathbf{let}:
                  the two most similar prototypes in a given set
 1: k' \leftarrow |C^{(b)}|
 2: repeat
 3: \{s, u\} \leftarrow \texttt{ClosestPrototypes}(SP)
 4: c_{su}^{(b)} \leftarrow c_{s}^{(b)} \cup c_{u}^{(b)}
 5: (C^{(b)} \leftarrow C^{(b)} \setminus \{c_s^{(b)}, c_u^{(b)}\}) \cup c_{su}^{(b)}
6: sp_{su} \leftarrow \texttt{ConstructSP}\left(c_{su}, \, p_{docs}, \, p_{terms}\right)
7: SP \leftarrow (SP \setminus \{sp_s, sp_u\}) \cup sp_{su}
 8: k' \leftarrow k' - 1
 9: until k' == k
10: \mathbf{return}(SP)
```

APPENDIX 6/6

Clustering evaluation meatrics:

$$NMI = \frac{\sum \frac{n_{ji}}{N} log_2 \frac{\frac{n_{ij}}{N}}{\frac{n_i^*}{N} \cdot \frac{n_j}{N}}}{\max\{H(C), H(C^*)\}}$$

$$F1 = 2\frac{P \cdot R}{P + R}$$

$$Purity = \frac{1}{N} \sum_{j=1}^{k} \max\{n_{ij}\}$$