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PRELIMINARIES

Text Clustering

Input: a static collection of text documents
Target: thematic segmentation into sufficiently different groups containing similar documents

Representation: usually in the vector space model (VSM)
- Term-document vectors in Bag-of-Words (TFIDF-BOW) model:

di = [div, .., div] "= [tf ;1 -ddf |, oo tf o ddf ]

Challenges
Curse of dimensionality & high sparsity

Language phenomena: polysemy, synonymy, homonymy, complex semantics, etc.



Content hierarchy

PRELIMINARIES S—

Text stream clustering

Event1l | [ “ Event M ]
Input: a stream of documents published over time = \

Activity 1 J dl [ActlwtyN J
Target: identification of document clusters referring to the same
real-life topic (or set of events) stoy1 | ||| [ storys |
Representation: using the document vectors + timestamps v s

Different text
A stream of T batches: documents / articles

!; -"’!;

.. Hd t
Challenges ap FAGSMENE
Conventional clustering neglects the timestamp information
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proximity between documents? il _
Feature-based vs. document-based topic representation °l \ [ »QM\\MA A
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ENHANCING VSM REPRESENTATION

The standard recipe Term bursts in stream

A. Make semantically richer VSM

Temporal information is seek into the distribution of
terms over time

- Term burst: a rapid increase in term’s occurrence rate
Re-weight the vectors favoring bursty terms

VSM bursty VSM
X - XB

B. Use traditional clustering algorithms

e.g. hierarchical agglomerative or k-means



ENHANCING VSM REPRESENTATION

Burst detection: the popular Kleinberg’s two-state automaton

Stream: S = [81, ey ST]

pP1 = Po Find the sequence (Q;... ;) of states for term |

by minimize the cost to be at state I:

cost=108(7) 0L otisul o) = (2] = oy
po=|D;|/T Output a burst weight for term |:
t2
w2 =" (a(0, s, [se]) — (1, [s45], |se])

t=t1
Statistically simple and popular

Difficult to tune the parameters: (X and vy , but not cheap computationally



ENHANCING VSM REPRESENTATION

Existing burst-based approaches (1)

[He et al. 2007 d]

B-VSM: d(t) — ]]-{tfij > 0} + (5w§t), if t € T

" 1{tf;; > 0}, otherwise
Term bursts in stream 2 0) [He et al. 2007b]
tfidfi; +w:’, if f,€B
SAB: dg) — f flj J f] .
I tfidfi;, otherwise

(tfidfiy - wl?, if f; € B

: g —
SMB ij \t fidfi;, otherwise

BAB:  d\) = tfidf;; +@."

BMB:  d,") =tfidfi; - w!”

BT: dz(-;) = tfidf;,
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ENHANCING VSM REPRESENTATION

Existing burst-based approaches (2)

Burst-VSM: dyy) = {

Term bursts in stream

tfidfij,
0,

_ [Zhao et al. 2012]
if t € T

otherwise

(t) _
Employed B-VSM: ¢ _{

tFidf;
tfidfij,

otherwise

—_
-wj(.t), itt €7y |
|
]




OUR CONTRIBUTION

A. Exploiting term burstiness and... co-burstiness

“ |f documents containing the same term during one of its burst periods,
this is an indication that they are part of the same event /topic

= But there is more happening in a stream...

Case C

Co-burstiness

4 batchl batch 1 ¢’1\‘\\ batch T
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Co-occurrence Case B
in document Co-occurrence
(bursty-nonbursty) in document
(bursty-bursty)




OUR CONTRIBUTION

B. Exploiting space duality

Document space  Feature space

clusters clusters

Term burst
(one-dimensional event)

|

Topic trend

(multi-dimensional event)

Our direction of work
Capitalizing on the duality between feature and document space

Bursty terms could indicate the most representative documents for their topic




CORRELATED BURSTY TERM CLUSTERING

Proposed CBTC method

Step 1: Create k’> K groups of bursty terms
Step 2: Construct the k&’ synthetic cluster prototypes [Kalogeratos et al. 2011]
Step 3: Apply agglomerative k-sp Kk’ K clusters

Step 4: Deterministic initialization of spherical k-means with the K produced prototypes




CORRELATED BURSTY TERM CLUSTERING

Proposed method (1)

Step 1: Create k’> K groups of bursty terms

a) Construct the novel bursty term correlation graph (B nodes)

D:inD;| | IDinDy]\
Qi = %( D T |Dj|j)71fh(Diij)ﬂ(TimTj)7é®
0, otherwise

b) Segment the graph with spectral clustering [Ng et al. 2002]



CORRELATED BURSTY TERM CLUSTERING

Proposed method (2)

Step 1: Create k’> K groups of bursty terms

Step 2: Construct the £’ synthetic cluster prototypes [Kalogeratos et al. 2011]
For each term group, select the documents that contain at least one bursty term
Then, robust representatives are built with a subset of objects around the medoid
They favor the dominant class in a cluster

Two parameters: the percentage of cluster members to use, and an L, filter

Inhomogeneous cluster example

medoid document

o
@® documents of dominant class
o

documents of some minority class
or not core for the dominant class
Pl N

’\ selected for synthetic prototypes



CORRELATED BURSTY TERM CLUSTERING

Proposed method (3)

Step 1: Create k’> K groups of bursty terms
Step 2: Construct the k&’ synthetic cluster prototypes [Kalogeratos et al. 2011]

Step 3: Apply agglomerative k-sp Kk’ K clusters

Merge the pair of nearest document clusters (recall: they correspond to term clusters)
Recompute the synthetic prototypes... repeat

Finally, produce K cluster prototypes



CORRELATED BURSTY TERM CLUSTERING

Proposed method (4)

Step 1: Create k’> K groups of bursty terms
Step 2: Construct the k&’ synthetic cluster prototypes [Kalogeratos et al. 2011]
Step 3: Apply agglomerative k-sp Kk’ K clusters

Step 4: Deterministic initialization of spherical k-means with the K produced prototypes

This algorithm uses cosine similarity and maximizes the clustering cohesion [Dhillon et al. 2001]

k

Cohesion(C) = Z Z T;I_di

VSM or B-VSM could be used for this final clustering



EXPERIMENTS

Datasets and setup (1)

5 datasets of moderate and small size

Standard preprocessing with TMG toolkit [Zeimpekis et al. 2006]

20Newsgroups

Reuters-21578
TDT5
GoogleNews

Text characteristics Stream characteristics

Name | Classes N Balance V Vi T B En H.
D1 10 1000 1 2352  45.89 30 354  33.3 3.030 £ 0.918
D2 10 1000 1 2310 44.54 30 381 33.3 3.030 £ 0.918
D3 10 993 0.93 1566 44.16 30 350  33.1  3.028 £+ 0.831
D4 30 4972 0.06 A717  21.54 | 183 4020 23.8 2.053 £+ 0.581
D5 11 268 0.43 1298  59.07 31 400 8.6 0.237 4+ 0.543

— N denotes the number of documents, Balance the ratio of the smallest to the largest
class, V' the size of the vocabulary, and V'; the average document vocabulary size.

— T is the number of time windows, B the number of bursty terms, |s;| the average
number of documents per window, and Hg the temporal topic entropy.



EXPERIMENTS

Datasets and setup (2)

We used the original timelines for D4 and D5

Artificially generated timelines for (D1-D2) and D3
Though respecting the original document ordering provided

This way we can adjust “stream complexity”

Parameters for stream generation (timestamps)

Parameter | Value / Selection range

T 30

A 0.2, 0.9]

#bursts per topic {1, 2}
%docs in bursts (0.7, 0.9]

(a) Generated stream for D1 dataset

'L Z 'ﬁt%’v— J*/\

0

( b) (Generated stream for D3 dataset

(c) Original stream for D5 dataset



Results with initializations of spherical k-means

RESULTS

VSM representation (X) B-VSM representation (XB)
Dataset PurityT Fi11 NMIT PurityT Fi11+ NMIT
: X (avg.) 0419 0423  0.365 XB (avg.) 0.444  0.479  0.410
Rand|nit vs. CBTC o (best) 0.510 0524 0457 (best)  0.562 0573 0.490
(100 restarts) X-3k 0.580  0.596  0.578 XB-3k 0.602  0.603  0.558
X-2k 0.628 0.658 0.594 XB-2k 0.626 0.653 0.576
X (avg.) 0.503 0.515 0.439 XB (avg.) 0.508  0.546 0.451
VSM vs. B-VSM - (best) 0571  0.580  0.491 (best) 0.611 0622  0.535
X-3k 0.684 0.712 0.633 XB-3k 0.684 0.700  0.618
X-2k 0.714 0.714  0.619 XB-2k 0.711 0.730 0.628
X (avg.) 0.661  0.649  0.645 XB (avg.) 0.710  0.710  0.686
D3 (best) 0.771  0.774  0.745 (best) 0.796 0.805 0.768
' X-3k 0.719 0.744  0.703 XB-3k 0.751  0.759  0.745
X-2k 0.774 0.787 0.765 XB-2k 0.774  0.792  0.766
X (avg.) 0.500  0.457  0.545 XB (avg.) 0.518 0473  0.584
. (best) 0.564 0511  0.587 (best) 0.614  0.556  0.641
X-3k 0.689 0.635  0.704 XB-3k 0.701 0.638  0.718
X-2k 0.678  0.622  0.712 XB-2k 0.688  0.625 0.722
X (avg.) 0.444  0.441  0.369 XB (avg.) 0.720  0.713  0.710
D (best) 0.557  0.566  0.474 (best) 0.794  0.793  0.772
N X-3k 0.716 0.742  0.650 XB-3k 0.828 0.837 0.791
X-2k 0.522 0531  0.504 XB-2k 0.623  0.647  0.658




CONCLUSION

Discussed the text stream clustering problem

Pointed out certain limitations in related work

Developed the CBTC method

Uses efficiently the term burstiness and co-burstiness information
Capitalizes on the duality of feature and document spaces

Provides good quality deterministic initialization for standard clustering methods
Presented experiments on real data (+ artificial timelines)

Future work
experimentation in larger datasets

parameter tuning



QUESTIONS

Thank youl!
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Algorithm 1 Initialization of spk-means with the CBTC.
ke, K A)

’ pte'r’ms '

function CBTC (X, P goes

input : X is the document matrix with row vectors,
Pyocs® Pterms are parameters for the synthetic
prototype construction, k and k' the starting
and desired number of clusters (k' > k), and A the
bursty term correlation matrix
output :  R={ry,...,7} the set of final cluster prototypes,
C'={c1,...,c;} the sets of documents assigned
to each cluster
1: Cf) « SegmentTermGraph (A, k') // see Alg. 2
2: {SP, C®)} - ConstructBurstySP (Cf), X, Poes: Prerms)
// see Alg.3
3: {SP} < MergeClusters (C(®), SP,| L, P s Piorms)
// see Alg. 4
{R, C'} + spkmeans (SP, X, k) // see Sec.2.1
return (R, ')

Al
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Algorithm 2 Segmentation procedure on the bursty terms.

function SegmentTermGraph (A, k')
input : A is the bursty term correlation matrix,
k' the desired number of groups
output : Cf) = {cgf),_ cg)} the segmentation solution

with &’ >k groups of bursty terms

1: Cf) « SpectralClustering (A, k')

2: ¢ e\ {Uc), Vie[t, k] st. )] <2}

3: return (C()
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Algorithm 3 Construction of bursty synthetic prototypes.

function ConstructBurstySP (C'(f), X, Pocs Pierms)

input :

output :

let :

C'f) is the segmentation of SegmentTermGraph (),
X the document matrix with row vectors,

Pioes® Prerms € the parameters for the synthetic
prototype construction

SP ={spy,..., sp.r } the set of synthetic prototypes,
C(b) = {cgb), (’:Eﬂb,)} the documents clusters
corresponding to the groups of bursty terms C(f)
f; the j-th term (here f; € B),

k' =|C®)| the number of clusters,

D the set of documents containing the term f;,

XDOCS the submatrix of X with the rows

that correspond to the documents in the set Docs,
ConstructSP() constructs a synthetic prototype,
AssignToClosest () assigns the documents of a set
to the closest of the prototypes provided

1: Docsp <+ @
2: fori=1...k
Docs +— @

for each f; € C?(/f)

oo

VB BSERAN

9: end for

Docs + Docs U Dj

end for
Docsp < Docsp U Docs
sp; < ConstructSP (X ), .q- Poes Pierms)

10: C®) « AssignToClosest (XDOCS-‘ SP)
11: return (SP,C®)
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Algorithm 4 Agglomerative cluster merging step.

function MergeClusters (C(%), SP, k. P Joes

» P tefr’ms)

input : C®), SP are the output of ConstructBurstySP (),

k is the final number of clusters to reduce set C'(P)

p , P are for the SP construction
docs’® Fterms

output : SP the synthetic cluster prototypes
let : ClosestPrototypes() that returns the indexes of
the two most similar prototypes in a given set
1: k' |C®)]
2. repeat
3 {s,u} < ClosestPrototypes (SP)
4: (Ebu) — (‘:gb) U (‘:,Ef))
5: (C®) @\ L, P ucel)
6: Sp g, < ConstructSP (cgy, Poes: Piorms)
7 SP <+ (SP \ {sp., sp,})Usp.,
8: k'« k" —1
9: until £/ ==k

10: return (SP)
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Clustering evaluation meatrics:
n@--
nji N

2w log

NMI= max{H (C), g(é\f*)}

P-R

F1 =2
P+ R

k
Purity = % Z max{n;; }
j=1



