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CONTRIBUTION
We propose the robust dip-dist criterion for cluster struc-
ture evaluation under a simple but fundamental assump-
tion: each cluster to admit a unimodal distribution. Our
novel criterion does not require the actual data vectors. It
applies a statistical hypothesis test (SHT), the Hartigans’
dip test [1], on the distribution of the pairwise distances
(or similarities) between a reference point of the set,
termed ‘viewer’, to the rest of members. Dip-dist is in-
corporated in an efficient incremental clustering method
called dip-means and straightforwardly extended in ker-
nel dip-means which is applicable in kernel space.

MOTIVATION
Clustering is very broadly applied, however, the number
of clusters k is usually set with ad hoc criteria (AHC),
e.g. Silhouette or Information Criteria (BIC, AIC, etc).
Any attempt to address the problem requires assumptions
about what the clusters we seek look like (shape, density
distribution) and, definitely, it is of great value for any as-
sumption to be verifiable with a theoretically sound SHT.
�i Existing methods, either following the AHC approach

such as x-means, or using an SHT such as g-means &
projected g-means, are lacking generality since they
make or imply Gaussianity assumptions.

DIP-DIST EXAMPLE
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Fig. 1: 2d synthetic data with two struc-
tures of 200 datapoints each. The split
viewers are denoted in red color. (a)
A Uniform spherical & elliptic Gaus-
sian structure. (b, c) The histograms of
pairwise distances of the strongest and
weakest split viewer. (d) The two struc-
tures come closer; the split viewers are
reduced, so does the dip value for the
best of them, which indicates that the
two structures became less distinguish-
able. (g) The structures are no longer dis-
tinguishable as the density map in (h)
shows one mode. (i) The Uniform spher-
ical is replaced with a structure generated
from a Student-t distribution.

THE DIP-DIST CRITERION
� What’s a cluster, anyway? We only assume that the
empirical density distribution of a cluster to be unimodal.
Hartigans’ dip test is a powerful unimodality SHT.
� Is this all about an SHT? The novel idea is to examine
the distribution of pairwise distances between a ‘viewer’
datapoint and the objects of a set for unimodality.

� And the benefits are...
4 Many unimodal distributions are identifiable,

e.g. Uniform, Gaussian, Student-t, etc.
4 Unimodality SHT is applied on the 1d ecdf features.
4 The actual data vectors are not required. Potential use

in kernel space, or on not strictly numerical vectors.

Algorithm for dip-dist criterion [O(bn logn+n2)]:
4 ... robust & efficient cluster structure evaluation.

1. Compute the ecdf U r
n and the respective dip(U r

n), r=1...b, for the Uniform sample distributions.
2. Compute F(xi)

n (t) = 1
n ∑x j∈c{Dist(xi,x j)≤ t} and dip(F(xi)

n ), i=1...n, for all datapoint viewers in set c.
3. Do the SHT for each viewer using a significance level α and p-value P(xi) = # [dip(Fn(xi))≤ dip(U r

n)] / b, r=1...b.
4. If there exist enough split viewers (v) in the set, we assign scorec =

1
|v| ∑xi∈v dip(F(xi)

n ), otherwise scorec = 0.

DIP-MEANS CLUSTERING ALGORITHM
Dip-means(X , kinit , α, vthd )

Table1: Results for synthetic datasetswith fixed k∗=20 clusterswith 200 datapoints in each cluster.
Case1, d=4 Case1, d=16 Case1, d=32

Methods ke ARI VI ke ARI VI ke ARI VI
dip-means 20.0±0.0 1.00±0.0 0.00±0.0 20.0±0.0 1.00±0.0 0.00±0.0 20.0±0.0 1.00±0.0 0.00±0.0
x-means 7.3±9.3 0.30±0.5 2.07±1.3 28.6±7.8 0.88±0.1 0.27±0.2 31.3±5.6 0.84±0.1 0.36±0.2
g-means 20.3±0.5 0.99±0.0 0.01±0.0 20.3±0.5 0.99±0.0 0.01±0.0 20.5±0.6 0.99±0.0 0.02±0.0
pg-means 19.2±2.5 0.90±0.1 0.16±0.2 19.0±0.9 0.95±0.1 0.07±0.1 3.2±5.1 0.09±0.2 2.62±0.9

Case2, d=4 Case2, d=16 Case2, d=32
Methods ke ARI VI ke ARI VI ke ARI VI
dip-means 20.0±0.0 0.99±0.0 0.05±0.0 20.0±0.0 0.99±0.0 0.02±0.0 20.0±0.0 0.99±0.0 0.01±0.0
x-means 24.8±39. 0.26±0.4 2.26±1.1 80.1±15. 0.75±0.1 0.75±0.2 71.6±14. 0.75±0.1 0.66±0.2
g-means 79.2±22. 0.77±0.1 0.70±0.2 105.9±30. 0.83±0.1 0.66±0.2 133.6±42. 0.83±0.1 0.72±0.2
pg-means 14.2±4.7 0.67±0.2 0.65±0.5 10.4±3.4 0.30±0.2 1.26±0.5 4.0±1.5 0.06±0.1 2.40±0.2

Table2: Clustering results for real-world data. Bold indicatesbest values.
PD3te (k∗=3) PD4te (k∗=4) PD10te (k∗=10)

Methods ke ARI VI ke ARI VI ke ARI VI
dip-means 3 0.879 0.332 4 0.626 0.545 7 0.343 1.587
x-means 155 0.031 3.792 194 0.039 3.723 515 0.041 3.825
g-means 21 0.226 1.800 36 0.209 2.049 73 0.295 1.961
pg-means 4 0.835 0.359 10 0.576 0.954 13 0.447 1.660

PD3tr (k∗=3) PD4tr (k∗=4) PD10tr (k∗=10)
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 0.963 0.116 4 0.522 0.841 9 0.435 1.452
x-means 288 0.018 4.378 381 0.020 4.372 942 0.024 4.387
g-means 52 0.106 2.641 58 0.143 2.464 149 0.160 2.605
pg-means 5 0.655 0.740 8 0.439 1.320 14 0.494 1.504

Coil3 (k∗=3) Coil4 (k∗=4) Coil5 (k∗=5)
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 1.000 0.000 5 0.912 0.173 4 0.772 0.308
x-means 8 0.499 0.899 11 0.499 0.951 15 0.601 0.907
g-means 7 0.669 0.650 12 0.502 0.977 18 0.434 1.204

Algorithm 1 Dip-means (X, kinit, α, vthd)

input: dataset X={xi}Ni=1, the initial number of clusters kinit, a statistic significance level α for the unimo-
dality test, percentage vthd of split viewers required for a cluster to be considered as a split candidate.
output: the sets of cluster members C={c j}kj=1, the models M={mj}kj=1 with the centroid of each c j set.
let: score=unimodalityTest(c, α, vthd) returns a score value for the cluster c,

{C,M}=kmeans(X, k) the k-means clustering, {C,M}=kmeans(X, M) when initialized with model M,
{mL,mR}=splitCluster(c) that splits a cluster c and returns two centers mL,mR.

1: k← kinit
2: {C,M} ← kmeans(X, k)
3: do while changes in cluster number occur
4: for j=1,. . . ,k % for each cluster j
5: score j ← unimodalityTest(c j,α,vthd) % compute the score for unimodality test
6: end for
7: if max j(score j) > 0 % there exist split candidates
8: target← argmax j (score j) % index of cluster to be splitted
9: {mL,mR} ← splitCluster(ctarget)
10: M← {M-mtarget,mL,mR} % replace the old centroid with the two new ones
11: {C,M} ← kmeans(X, M) % refine solution
12: end if
13: end do
14: return {C,M}

unimodalitySHT

� It is an incremental method that combines three individual components:
• a local search clustering technique [k-means]
• a cluster structure evaluation and selection criterion [dip-dist]
• a cluster splitting procedure, [10 trials of 2-means]

� In each incremental iteration...
• to avoid overestimation of k only the candidate with max score is split.
• the k+1 clusters are refined using k-means.

� The procedure terminates when no split candidates are identified.
�i Kernel dip-means uses kernel k-means and a modified splitting procedure.

APPLICATION ON SYNTHETIC DATA
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Fig. 2: (a-d) 2d structures with 200 points each (⊗: centroids, ke: estimation of k∗). (e, f) Non-linearly
separable uniform rings (kernel-based clustering with RBF kernel).

Table 1: d-dimensional datasets with k∗=20 true clusters of 200 points each. Mixtures of: Case 1) Gaussians
of varying eccentricity, or Case 2) Gaussians (40%), Student-t (20%), Uniform ellipses (20%), Uniform rect-
angles (20%). The average Adjusted Rand Index[↑] and Variation of Information[↓] of 30 datasets is reported.Table 1: Results for synthetic datasets with fixed k∗=20 clusters with 200 datapoints in each cluster.

Case 1, d=4 Case 1, d=16 Case 1, d=32
Methods ke ARI VI ke ARI VI ke ARI VI
dip-means 20.0±0.0 1.00±0.0 0.00±0.0 20.0±0.0 1.00±0.0 0.00±0.0 20.0±0.0 1.00±0.0 0.00±0.0
x-means 7.3±9.3 0.30±0.5 2.07±1.3 28.6±7.8 0.88±0.1 0.27±0.2 31.3±5.6 0.84±0.1 0.36±0.2
g-means 20.3±0.5 0.99±0.0 0.01±0.0 20.3±0.5 0.99±0.0 0.01±0.0 20.5±0.6 0.99±0.0 0.02±0.0
pg-means 19.2±2.5 0.90±0.1 0.16±0.2 19.0±0.9 0.95±0.1 0.07±0.1 3.2±5.1 0.09±0.2 2.62±0.9

Case 2, d=4 Case 2, d=16 Case 2, d=32
Methods ke ARI VI ke ARI VI ke ARI VI
dip-means 20.0±0.0 0.99±0.0 0.05±0.0 20.0±0.0 0.99±0.0 0.02±0.0 20.0±0.0 0.99±0.0 0.01±0.0
x-means 24.8±39. 0.26±0.4 2.26±1.1 80.1±15. 0.75±0.1 0.75±0.2 71.6±14. 0.75±0.1 0.66±0.2
g-means 79.2±22. 0.77±0.1 0.70±0.2 105.9±30. 0.83±0.1 0.66±0.2 133.6±42. 0.83±0.1 0.72±0.2
pg-means 14.2±4.7 0.67±0.2 0.65±0.5 10.4±3.4 0.30±0.2 1.26±0.5 4.0±1.5 0.06±0.1 2.40±0.2

α=
b=
vthd=

α=

ke denotes the estimated
number of clusters). In Figures 2(a), (b), we provide two indicative examples of single cluster struc-
tures. X-means decides correctly for the structure generated from Student-t distribution, but overfits
in the Uniform rectangle case, while the other two methods overfit in both cases. In the multicluster
dataset of Figure 2(c), dip-means successfully discovers all clusters, in contrast to the other methods
that significantly overestimate. To test the kernel dip-means extension, we created two 2d synthetic
dataset containing two and three Uniform ring structures and we used an RBF kernel to construct
the kernel matrix K. It is clear that x-means, g-means, and pg-means are not applicable in this case.
Thus we present in Figures 2(d), 2(e) the results using kernel dip-means and also the best solution
from 50 randomly initialized runs of kernel k-meanswith the true number of clusters. As we may ob-
serve, dip-means estimates the true number of clusters and finds the optimal grouping of datapoints
in both cases, whereas kernel k-means fails in the three ring case. Furthermore, we created synthetic
datasets with true number k∗= d=

tr and a testing set PDte

{0,2,4} (PD3tr and PD3te) and {3,6,8,9} (PD4tr and PD4te

Bag of Visual Words model using 1000 visual words. As reported in
Table 2, dip-means correctly discovers the number of clusters for the subsets of Pendigits, while
providing a reasonable underestimation ke near the optimal for the full datasets PD10tr and PD10te

ke. In the high dimensional and sparse space of the considered Coil subsets, x-means
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CLUSTERING REAL-WOLD DATASETS
Table 2: Clustering results for real-world data. Bold indicates best values.

PD3te (k∗=3) PD4te (k∗=4) PD10te (k∗=10)
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 0.879 0.332 4 0.626 0.545 7 0.343 1.587
x-means 155 0.031 3.792 194 0.039 3.723 515 0.041 3.825
g-means 21 0.226 1.800 36 0.209 2.049 73 0.295 1.961
pg-means 4 0.835 0.359 10 0.576 0.954 13 0.447 1.660

PD3tr (k∗=3) PD4tr (k∗=4) PD10tr (k∗=10)
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 0.963 0.116 4 0.522 0.841 9 0.435 1.452
x-means 288 0.018 4.378 381 0.020 4.372 942 0.024 4.387
g-means 52 0.106 2.641 58 0.143 2.464 149 0.160 2.605
pg-means 5 0.655 0.740 8 0.439 1.320 14 0.494 1.504

Coil3 (k∗=3) Coil4 (k∗=4) Coil5 (k∗=5)
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 1.000 0.000 5 0.912 0.173 4 0.772 0.308
x-means 8 0.499 0.899 11 0.499 0.951 15 0.601 0.907
g-means 7 0.669 0.650 12 0.502 0.977 18 0.434 1.204

and g-means provide more reasonable ke estimations, but still overestimations. An explanation for
this behavior is that they discover smaller groups of similar images, i.e. images taken from close
angles to the same object, but fail to unify the subclusters at higher level. Note also that we did not
manage to test pg-means in Coil-100 subsets, since covariance matrices were not positive definite.
The superiority of dip-means is also indicated by the reported values for ARI and VI measures.

5 Conclusions

We have presented a novel approach for testing whether multiple cluster structures are present in a
set of data objects (e.g. a data cluster). The proposed dip-dist criterion checks for unimodality of the
empirical data density distribution, thus it is much more general compared to alternatives that test for
Gaussianity. Dip-dist uses a statistical hypothesis test, namely Hartigans’ dip test, in order to verify
unimodality. If a data object of the set is considered as a viewer, then the dip test can be applied
on the one-dimensional distance (or similarity) vector with components the distances between the
viewer and the members of the same set. We exploit the idea that the observation of multimodality in
the distribution of distances indicates multimodality of the original data distribution. By considering
all the data objects of the set as individual viewers and by combining the respective results of the
test, the presence of multiple cluster structures in the set can be determined.

We have also proposed a new incremental clustering algorithm called dip-means, that incorporates
dip-dist criterion in order to decide for cluster splitting. The procedure starts with one cluster, it iter-
atively splits the cluster indicated by dip-dist as more probable to contain multiple cluster structures,
and terminates when no new cluster split is suggested. By taking advantage of the fact that dip-dist
utilizes only information about the distances between data objects, we have modified appropriately
the main algorithm to propose kernel dip-means which can be applied in kernel space.

The proposed method is fast, easy to implement, and works very well under a fixed parameter
setting. The reported clustering results indicate that dip-means can provide reasonable estimates
of the number of clusters, and produce meaningful clusterings in both dataset types in a variety of
artificial and real datasets. Apart from testing the method in real-world applications, there are several
ways to improve the implementation details of the method, especially the kernel-based version. We
also plan to test its e ectiveness in other settings, such as online clustering of stream data.
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Table 2: Bold indicates the best value for the results in real datasets.
Pendigits (UCI) contains 16-dimensional vector representing written
digits from 0-9. We used the training PDtr and testing set PDte with
7494 and 3498 instances, respectively and subsets that contain the
digits {0,2,4} (PD3tr and PD3te) and {3,6,8,9} (PD4tr and PD4te).
Coil-100 contains 72 images taken from different angles for each one
of the 100 included objects. We used tree subsets Coil3, Coil4, Coil5,
with images from 3, 4 and 5 objects, respectively. The images are rep-
resented by the Bag of Visual Words model using 1000 visual words.
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