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We propose the robust dip-dist criterion for cluster struc-
ture evaluation under a simple but fundamental assump-
tion: each cluster to admit a unimodal distribution. Our
novel criterion does not require the actual data vectors. It
applies a statistical hypothesis test (SHT), the Hartigans’
dip test [1], on the distribution of the pairwise distances
(or similarities) between a reference point of the set,
termed ‘viewer’, to the rest of members. Dip-dist 1s 1n-
corporated 1n an efficient incremental clustering method
called dip-means and straightforwardly extended in ker-
nel dip-means which 1s applicable in kernel space.

THE DIP-DIST CRITERION

What’s a cluster, anyway? We only assume that the
empirical density distribution of a cluster to be unimodal.
Hartigans’ dip test 1s a powerful unimodality SHT.

Is this all about an SHT? The novel idea 1s to examine
the distribution of pairwise distances between a ‘viewer’
datapoint and the objects of a set for unimodality.

Algorithm for dip-dist criterion [O(bnlogn + n?)]:
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MOTIVATION

Clustering 1s very broadly applied, however, the number
of clusters k 1s usually set with ad hoc criteria (AHC),
e.g. Silhouette or Information Criteria (BIC, AIC, etc).
Any attempt to address the problem requires assumptions
about what the clusters we seek look like (shape, density
distribution) and, definitely, 1t 1s of great value for any as-
sumption to be verifiable with a theoretically sound SHT.
i Existing methods, either following the AHC approach
such as x-means, or using an SHT such as g-means &
projected g-means, are lacking generality since they
make or imply Gaussianity assumptions.

And the benefits are...
Many unimodal distributions are 1dentifiable,
e.g. Uniform, Gaussian, Student-t, etc.
Unimodality SHT 1s applied on the 1d ecdf features.
The actual data vectors are not required. Potential use
in kernel space, or on not strictly numerical vectors.

. robust & efficient cluster structure evaluation.

1. Compute the ecdf U, and the respective di p(U n), r=1...b, for the Uniform sample distributions.

2. Compute F¥) (1) =

% ijEc{DiSt (xi,x;) <t} and dip(Fflxi)), i—1...n, for all datapoint viewers in set c.

3. Do the SHT for each viewer using a significance level o and p-value P& = #[dip(F, %)) < dip(U!)] / b, r=1...b.
4. If there exist enough split viewers (v) in the set, we assign score, = va| Y rerdip(F 1)) otherwise score, = 0.

DIP-DIST EXAMPLE

(@) xnosplit x split 71% ©max dip @min dip (b) best split viewer: p=0.00, dip=0.1097
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(d) xno split  xsplit 24% Omax dip Bmin dip (e) best split viewer: p=0.00, dip=0.0776
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(h) density plot

(c) worst split viewer: p=0.00, dip=0.0335

(F)  worst split viewer: p=0.00, dip=0.0335
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Fig. 1: 2d synthetic data with two struc-
tures of 200 datapoints each. The split
viewers are denoted in red color. (a)
A Uniform spherical & elliptic Gaus-
sian structure. (b, ¢) The histograms of
pairwise distances of the strongest and
weakest split viewer. (d) The two struc-
tures come closer; the split viewers are
reduced, so does the dip value for the
best of them, which indicates that the
two structures became less distinguish-
able. (g) The structures are no longer dis-
tinguishable as the density map in (h)
shows one mode. (i) The Uniform spher-

| ~1cal 1s replaced with a structure generated
R ' from a Student-t distribution.
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DIP-MEANS CLUSTERING ALGORITHM

Dip-means(X, k;,i;, O, Vipg)
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It 1s an incremental method that combines three individual components:

a local search clustering technique k-means]
a cluster structure evaluation and selection criterion [dip-dist]
a cluster splitting procedure, 10 trials of 2-means]

In each incremental iteration...

to avoid overestimation of k only the candidate with max score 1s split.
the k+1 clusters are refined using k-means.

The procedure terminates when no split candidates are identified.

1: k — kipis
2: {C, M} < kmeans(X, k)
3: do while changes in cluster number occur
4: for j=1,....k
5: score; <— unimodalityTest(c;, O, vyq)
6: end for
7: if max;(score;) >0
8: target «— argmax; (score;)
9: {mp, mg} < splitCluster(c,s ger)
10: M {M'mtargela mr, mR}
11: {C, M} «— kmeans(X, M)
12: end if
13: end do

14: return {C, M}

i] Kernel dip-means uses kernel k-means and a modified splitting procedure.

APPLICATION ON SYNTHETIC DATA
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separable uniform rings (kernel-based clustering with RBF kernel).

Table 1: d-dimensional datasets with k=20 true clusters of 200 points each. Mixtures of: Case 1) Gaussians
of varying eccentricity, or Case 2) Gaussians (40%), Student-t (20%), Uniform ellipses (20%), Uniform rect- N
angles (20%). The average Adjusted Rand Index[1] and Variation of Information[] ] of 30 datasets is reported.
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(e) kernel dip-means: k® = 3
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Case 1, d=4 Case 1, d=16 Case 1, d=32 21
Methods k¢ ARI VI k¢ ARI VI k¢ ARI VI
dip-means | 20.0£0.0 1.00£0.0 0.00£0.0| 20.0£0.0 1.00£0.0 0.00£0.0| 20.0£0.0 1.00£0.0 0.00%£0.0 00 02 o0z o8 08 i
X-means 7.3£9.3 0.3020.5 2.07£1.3| 28.6x7.8 0.88+0.1 0.27+£0.2| 31.3£5.6 0.84+0.1 0.36%0.2 8 1(F) kerel k-means: k = 3
g-means |20.3£0.5 0.99£0.0 0.01£0.0| 20.3£0.5 0.99£0.0 0.01£0.0| 20.5£0.6 0.99+0.0 0.02+0.0 w” *“%%
pg-means |19.2+2.5 0.90+£0.1 0.16£0.2] 19.0£0.9 0.95£0.1 0.07%0.1 3.2£5.1 0.09+0.2 2.62+0.9 6 3
Case 2, d=4 Case 2, d=16 Case 2, d=32
Methods k¢ ARI VI k¢ ARI VI k¢ ARI VI 41
dip-means | 20.0£0.0 0.99+£0.0 0.05£0.0| 20.0£0.0 0.99£0.0 0.02+0.0| 20.0£0.0 0.99£0.0 0.01£0.0
x-means |24.8+£39. 0.26x0.4 2.26x1.1| 80.1x15. 0.75x0.1 0.75£0.2| 71.6x14. 0.75£0.1 0.66%0.2 21
g-means |79.2£22. 0.77£0.1 0.70£0.2|105.9£30. 0.83+£0.1 0.66x0.2 [ 133.6x42. 0.83+0.1 0.72%0.2
pg-means |14.2+4.7 0.67£0.2 0.65£0.5| 10.4+3.4 0.30£0.2 1.26x0.5| 4.0£1.5 0.06x0.1 2.40%£0.2 09 1

CLUSTERING REAL-WOLD DATASETS

PD3,, (K=3) PD4,, (K*=4) PD10,, (K*=10)
Methods & ARI VI | ¥ ARI VI | k¥ ARl VI
dip-means | 3 0.879 0332 | 4 0.626 0545 | 7 0343 1.587
x-means | 155 0.031 3.792 | 194 0.039 3.723 | 515 0.041 3.825
g-means 21 0226 1.800 | 36 0209 2049 | 73 0295 1.961
pg-means 4 0835 0359 | 10 0576 0954 | 13 0.447 1.660
PD3, (KF'=3) PD4, (K'=4) PDI10, (K=10)
Methods &k ARI VI |  ARI VI | k¥ ARl VI
dip-means | 3 0963 0.116 | 4 0522 0.841 O 0435 1.452
x-means | 288 0.018 4378 | 381 0.020 4372 | 942 0.024 4387
g-means 52 0.106 2.641 | 58 0.143 2464 | 149 0.160 2.605
pg-means 5 0655 0740 | 8 0439 1320 | 14 0.494 1.504
Coil3 (K=3) Coild (K=4) Coil5 (K=5)
Methods &k ARI VI | ¥ ARI VI | k¥ ARl VI
dip-means | 3 1.000 0.000 | 5 0912 0.173 | 4 0.772 0.308
X-means 8 0499 0899 | 11 0.499 0951 | 15 0.601 0.907
g-means 7 0669 0.650 | 12 0502 0977 | 18 0.434 1.204

Table 2: Bold indicates the best value for the results 1n real datasets.
Pendigits (UCI) contains 16-dimensional vector representing written
digits from 0-9. We used the training PD;, and testing set PD,, with
7494 and 3498 1nstances, respectively and subsets that contain the
digits {0,2,4} (PD3;, and PD3;.) and {3,6,8,9} (PD4,, and PD4,,).
Coil-100 contains 72 images taken from different angles for each one
of the 100 included objects. We used tree subsets Coil3, Coil4, Coils,
with images from 3, 4 and 5 objects, respectively. The images are rep-
resented by the Bag of Visual Words model using 1000 visual words.
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