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1. Motivation

Consider a feature space X ⊂ Rn.
The likelihood-ratio between two
density functions
p(x) and q(x) is:

r(x) = q(x)
p(x) x ∈ X

Applications of likelihood-ratio
estimation (LRE): Hypothesis
Testing (Neyman-Pearson Lemma,
[2]), Sequential Change-point
detection [4], Transfer Learning
(Importance sampling [1]), ...

Question: LRE techniques are only
used on single-source or aggregated
data. How can we extend LRE to
complex systems such as network of
sensors, transport networks, public
health surveillance, etc?

Contribution: A graph-based
collaborative framework that
capitalizes over the similarities
between data sources to infer
(r1(·), ..., rN(·)) for all the nodes of
a graph

2. Problem statement
and framework

Setting
I G = (V,E,W ) is a given

weighted undirected graph, and
W is its weighted adjacency
matrix encoding similarity
between nodes

I Each node v ∈ V has access to
observations x1, x2, ..., xn

iid∼ Pv
and x′1, x

′
2, ..., x

′
n′

iid∼ Qv

Framework [? ]
I Non-parametric LRE: Infer

the node-level relative
likelihood-ratios
rαv (·) =

qv(·)
(1−α)pv(·)+αqv(·) via the

variational formulation of the
Pearson’s PE-divergence
minimization [3]:

PE(pα, q) =

∫
(rα(x)− 1)2

2
pα(x)dx

≥ sup
f∈H

∫
f (x)q(x)dx

−
∫
f 2(x)

2
pα(x)dx− 1

2

I Reproducing Kernel Hilbert
Space (RKHS): The space H is
equipped with the inner product
〈·, ·〉H : H×H→ R, which is induced
by a symmetric and positive
semi-definite kernel function
K(·, ·) : X × X → R.
H satisfies the reproducing property,
that is ∀x ∈ X and f ∈ H:
f (x) = 〈f (·), K(x, ·)〉H.
φ(X) denotes the associated feature
map.

I Integrate graph component
via multitasking: ‖ru − rv‖H < ε
if u ∼ v

Application: Collaborative two
sample test

Hnull : pv = qv, ∀v ∈ V vs

Halt : pv 6= qv, ∀v ∈ C,
where C is a subset of nodes

3. GRULSIF: Graph-based Relative
Unconstrained Least-Squares
Importance Fitting

From node-level data sets to node-level
likelihood-ratio functions

By the reproducing property of H, ∀v ∈ V , fv takes the form
fv(x) =

∑L
l=1 θv,iK(x, xi). Define the terms:

Hv =
1

nv

∑
x∈Xv

φ(x)φ(x)>, H ′v =
1

n′v

∑
x∈X′v

φ(x)φ(x)>

h′v =
1

n′v

∑
x∈X′v

φ(x).

Multitasking formulation of the problem via
PE-divergence minimization

min
Θ∈RNL

1

N

∑
v∈V

PE-divergence node-level︷ ︸︸ ︷(
(1− α)θ

>
v Hvθv
2

+ α
θ>v H

′
vθv

2
− h′vθv

)

+

node-level regularization term︷ ︸︸ ︷
λγ

2

∑
v∈V
‖θv‖2 +

graph-level regularization term︷ ︸︸ ︷
λ

4

∑
u,v∈V

Wuv ‖θu − θv‖2

Implementation
The problem is quadratic and we solve it via block gradient
descent, whose number of iterations scales in O(log2(NL)).
The i-th cycle of updates for node v can be written as:

θ̂(i)
v =

1

ηv + λγ

[
ηvθ̂

(i−1)
v −

component depending on node v︷ ︸︸ ︷(
(1− α)Hv + αH ′v

N
θ̂(i−1)
v − h′v

N

)

−

component depending on the graph︷ ︸︸ ︷
λ

(
dvθ̂

(i−1)
v −

∑
u∈(v)

Wuv

(
θ̂(i)
u 1u<v + θ̂(i−1)

u 1u≥v
))]

4. Application:
Collaborative two-sample test

From likelihood-ratios to p-values
Main hypothesis: C is such that the vector (rα1 (x), ..., r

α
N(x))

is smooth over the graph

Statistical scores Sv based on PE-divergence
approximation

ˆPE
α

v (X,X
′) =

∑
x′∈X′

v

f̂v(x)

n′v
− (1− α)

2

∑
x∈Xv

f̂v(x)
2

nv

− α

2

∑
x′∈X′

v

f̂v(x)
2

n′v
− 1

2

To address the lack of symmetry, we compute the node-level score
Sv = ˆPE

α

v (X,X
′) + ˆPE

α

v (X
′,X)

Identify the nodes in C
I Run a permutation test to estimate the p-value π̂v

associated with the statistic Sv
I Identify the nodes with the p-values π̂v lower than a prefixed

value π∗

6. Experiments on semi-synthetic examples

Synthetic graph structure: Stochastic Block Model to
generate graphs with
4 clusters (C1, C2, C3, C4), made of 20 nodes each. The
probability of intra-cluster link is fixed at 0.5, and that of
inter-cluster link at 0.01

Node-level dataset: MNIST digits dataset
Hnull → Halt Selected clusters

xv ∈ digits{0, 1} → x′v ∈ digits{8, 9}, if v ∈ C1;

xv ∈ digits{2, 3} → x′v ∈ digits{8, 9}, if v ∈ C2;

xv ∈ digits{4, 5} → x′v ∈ digits{8, 9}, if v ∈ C3;

xv ∈ digits{6, 7} → x′v ∈ digits{8, 9}, if v ∈ C1.

π∗ = 0.01

Method n=n′ Recall (↑) Precision (↑) F1 (↑)
GRULSIF α=0.1 25 1.00 (0.01) 0.98 (0.03) 0.99 (0.01)

Pool α=0.1 25 0.98 (0.13) 0.60 (0.21) 0.71 (0.18)
GRULSIF α=0.5 25 0.98 (0.05) 0.98 (0.03) 0.98 (0.03)

Pool α=0.5 25 1.00 (0.00) 0.45 (0.12) 0.61 (0.11)
RULSIF α=0.1 25 0.99 (0.03) 0.86 (0.06) 0.92 (0.04)

ULSIF 25 0.97 (0.05) 0.90 (0.05) 0.93 (0.04)
KLIEP 25 0.99 (0.02) 0.43 (0.05) 0.60 (0.05)

MMD median 25 0.33 (0.31) 0.91 (0.22) 0.42 (0.31)
MMD aggreg 25 0.33 (0.29) 0.92 (0.19) 0.43 (0.29)

GRULSIF α=0.1 50 1.00 (0.00) 0.97 (0.04) 0.98 (0.02)
Pool α=0.1 50 1.00 (0.00) 0.33 (0.09) 0.50 (0.08)

GRULSIF α=0.5 50 1.00 (0.00) 0.96 (0.04) 0.98 (0.02)
Pool α=0.5 50 1.00 (0.00) 0.33 (0.05) 0.49 (0.05)

RULSIF α=0.1 50 1.00 (0.00) 0.85 (0.06) 0.91 (0.04)
ULSIF 50 1.00 (0.00) 0.88 (0.06) 0.94 (0.03)
KLIEP 50 0.99 (0.02) 0.62 (0.07) 0.76 (0.06)

MMD median 50 0.50 (0.32) 0.94 (0.10) 0.59 (0.27)
MMD aggreg 50 0.57 (0.28) 0.95 (0.07) 0.68 (0.21)

π∗ = 0.05

Method n=n′ Recall (↑) Precision (↑) F1 (↑)
GRULSIF α=0.1 25 1.00 (0.00) 0.94 (0.05) 0.97 (0.03)

Pool α=0.1 25 0.98 (0.13) 0.46 (0.15) 0.60 (0.15)
GRULSIF α=0.5 25 1.00 (0.02) 0.93 (0.06) 0.96 (0.03)

Pool α=0.5 25 1.00 (0.00) 0.34 (0.07) 0.51 (0.08)
RULSIF α=0.1 25 1.00 (0.00) 0.55 (0.05) 0.71 (0.44)

ULSIF 25 1.00 (0.00) 0.62 (0.06) 0.76 (0.04)
KLIEP 25 1.00 (0.00) 0.32 (0.04) 0.49 (0.04)

MMD median 25 0.49 (0.30) 0.82 (0..13) 0.57 (0.24)
MMD aggreg 25 0.55 (0.28) 0.82 (0.10) 0.57 (0.24)

GRULSIF α=0.1 50 1.00 (0.00) 0.92 (0.06) 0.96 (0.03)
Pool α=0.1 50 1.00 (0.00) 0.28 (0.07) 0.44 (0.07)

GRULSIF α=0.5 50 1.00 (0.00) 0.89 (0.06) 0.94 (0.03)
Pool α=0.5 50 1.00 (0.00) 0.27 (0.02) 0.43 (0.03)

RULSIF α=0.1 50 1.00 (0.00) 0.55 (0.71) 0.71 (0.04)
ULSIF 50 1.00 (0.00) 0.60 (0.05) 0.75 (0.04)
KLIEP 50 1.00 (0.00) 0.58 (0.05) 0.40 (0.05)

MMD median 50 0.66 (0.24) 0.83 (0.11) 0.72 (0.17)
MMD aggreg 50 0.79 (0.15) 0.86 (0.08) 0.82 (0.09)

7. Conclusions

GRULSIF
I A novel non-parametric framework for multiple

likelihood-ratios estimation
I A detailed and efficient implementation that is conveniently

scalable for big graphs

Collaborative two-sample test:
I A detailed procedure that identifies the best hyperparameters

and estimates node-level p-values
I A collaborative two-sample test, which outperforms

non-parametric approaches that does not take the graph into
account
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