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Abstract

We present a framework for fitting multivariate Hawkes processes for large-scale problems, both in the number of events in the observed history n and the number of event types d (i.e. dimensions). The proposed Scalable Low-Rank
Hawkes Process (SLRHP) framework introduces a low-rank approximation of the kernel matrix that allows to perform the nonparametric learning of the d2 triggering kernels in at most O(ndr2) operations, where r is the rank of the
approximation (r� d, n). This comes as a major improvement to the existing state-of-the-art inference algorithms that require O(nd2) operations. Furthermore, the low-rank approximation allows SLRHP to learn representative patterns
of interaction between event types, which is usually valuable for the analysis of complex processes in real-world networks.

Background
1. Motivations

Applications of Hawkes processes to large-scale problems
I Finance: modeling order book and buying order arrivals.
I Biology: modeling occurrences of genes in DNA chains.
I Social interactions studies: modeling videos shares/views, or tweets.

Previous work on large-scale inference
I Markovian nonparametric estimation using the memoryless property of

exponential kernels: complexity O(nd2). Lemonnier and Vayatis [2014]
I Learning a low-rank mutual excitation matrix while fixing the temporal

excitation pattern: complexity O(n2d).Tran et al. [2015], Xu et al. [2016]

2. Problem statement

Hawkes processes on graphs

Let G = (V , E) be a directed network of d nodes and A∈{0, 1}d×d its
adjacency matrix. We consider a multivariate Hawkes process (MHP)
N(t) = {Nu(t) : u= 1, ..., d, t≥ 0} such that the mutual excitations take
place along the edges of G. For an event history H : (um, tm)nm=1, the rate
of occurrence of node u is given by:

λu(t) = µu(t) +
∑
m:tm<t

Aumu gumu(t− tm). (1)

Model considerations

Without further assumptions, the inference requires:
I learning of d2 triggering kernels that encode cross-excitements,
I O(n2) computations of gumu(t− tm),

which yields a prohibitive O(n2d2) complexity.

Figure: Mutually-exciting dynamics of Hawkes processes.

Theoretical Results
3. The proposed decompositions

Low-rank decomposition O(d2)→ O(d)
The natural occurrence rates µu and triggering kernels gvu of Eq. 1 are
defined via the low-rank approximations:

µu(t) =
∑r

i=1Pui µ̃i(t) and gvu(t) =
∑r

i,j=1PuiPvj g̃ji(t), (2)

where u, v are event types and P ∈Rd×r
+ is the projection matrix from the

original d-dimensional to the low-dimensional space.

Markovian decomposition O(n2)→ O(n)
The natural occurrence rate and the kernel function are approximated by a
sum of K exponential triggering functions with γ, δ > 0 fixed hyperparameters:

µ̂Ki (t) =
∑K

k=0 βi,k e
−kγt and ĝKji (t) =

∑K
k=1αji,k e

−kδt. (3)

4. Log-likelihood formulation

The log-likelihood of the model can be rewritten as follows:

L̂(P,H;α) =
∑
h,m

ln

 ∑
u,v,i,j,k

PuiPvj αji,kDh,m,u,v,k


−

∑
h,u,v,i,j,k

PuiPvj αji,kBh,u,v,k,

(4)

where B and D are two sparse tensors that can be computed in O(nd).

5. Optimization algorithm

Optimization of Hawkes parameters α
Using self-concordant barriers Nesterov et al. [1994]

Optimization of projections matrices P
Let p be a reshaping of the projection matrix P to a vector (linearized) and
2 Ξhmui,vj =

∑
k(αji,kDh,m,u,v,k + αij,kDh,m,v,u,k),

2 Ψui,vj =
∑

h,k(αji,kBh,u,v,k + αij,kBh,v,u,k).
Proposition 1. The log-likelihood is non-decreasing under the update:

pt+1
ui = ptui

∑
h,m

(Ξhmpt)ui

pt>Ξhmpt(Ψpt)ui

1/2

. (5)

Furthermore, if pui is a stable fixed point of Eq. 5, then pui is a local
maximum of the log-likelihood.

Experiments
6. Results
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(a) CPU time with respect to nd.
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(b) AUC for predicting the dimension that will

generate the next event with respect to r.
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(c) Learned embedding when r= 2.
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(d) Learned embedding for simulated example.

7. Empirical conclusions

I Highly scalable approach able to scale to datasets one order of
magnitude larger than the state-of-the-art.

I Little loss of accuracy compared to state-of-the-art competitors.
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