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Text Document Clustering Using Global Term
Context Vectors

Argyris Kalogeratos - Aristidis Likas

Abstract Despite the advantages of the traditional Vector Space Model (VSM)
representation, there are known deficiencies concerning the term independence as-
sumption. The high dimensionality and sparsity of the text feature space, and
phenomena such as polysemy and synonymy can only be handled if a way is
provided to measure term similarity. Many approaches have been proposed that
map document vectors onto a new feature space where learning algorithms can
achieve better solutions. This paper presents the Global Term Context Vector-
VSM (GTCV-VSM) method for text document representation. It is an extension
to VSM that: i) it captures local contextual information for each term occur-
rence in the term sequences of documents; ii) the local contexts for the occur-
rences of a term are combined to define the global context of that term; iii) using
the global context of all terms a proper semantic matrix is constructed; iv) this
matrix is further used to linearly map traditional VSM (Bag of Words - BOW)
document vectors onto a ‘semantically smoothed’ feature space where problems
such as text document clustering can be solved more efficiently. We present an
experimental study demonstrating the improvement of clustering results when the
proposed GTCV-VSM representation is used compared to traditional VSM-based
approaches.

Keywords Text Mining - Document Clustering - Semantic Matrix - Data
Projection

1 Introduction

The text document clustering procedure aims towards automatically partitioning
a given collection of unlabeled text documents into a (usually predefined) number
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of groups, called clusters, such that similar documents are assigned to the same
cluster while dissimilar documents are assigned to different clusters. This is a task
that discovers the underlying structure in a set of data objects and enables the
efficient organization and navigation in large text collections.

The challenging characteristics of the text document clustering problem are re-
lated to the complexity of the natural language. Text documents are represented
in high dimensional and sparse (HDS) feature spaces, due to their large term
vocabularies (the number of different terms of a document collection, or text fea-
tures in general). In an HDS feature space, the difference between the distance of
two similar objects and the distance of two dissimilar objects is relatively small
[4]. This phenomenon prevents clustering methods from achieving good data par-
titions. Moreover, the text semantics, e.g. term correlations, are mostly implicit
and non-trivial, hence difficult to extract without prior knowledge for a specific
problem.

The traditional document representation is the Vector Space Model (VSM)
[28] where each document is represented by a vector of weights corresponding to
text features. Many variations of VSM have been proposed [17] that differ in what
they consider as a feature or ‘term’. The most common approach is to consider
different words as distinct terms, which is the widely known Bag Of Words (BOW)
model. An extension is the Bag Of Phrases model (BOP) [23] that extracts a set of
informative phrases or word n-grams (n consecutive words). Especially for noisy
document collections, e.g. containing many spelling errors, or collections whose
language is not known in advance, it is often better to use VSM to model the
distribution of character n-grams in documents. Herein, we consider word features
and we refer to them as terms, however, the procedures we describe can be directly
extended to more complex features.

Despite the simplicity of the popular word-based VSM version, there are com-
mon language phenomena that it cannot handle. More specifically, it cannot distin-
guish the different senses of a polysemous word in different contexts, or realize the
common sense between synonyms. It also fails to recognize multi-word expressions
(e.g. ‘Olympic Games’). These deficiencies are in part due to the over-simplistic
assumption of term independence, where each dimension of the HDS feature space
is considered to be vertical to the others, and makes the classic VSM model inca-
pable of capturing the complex language semantics. The VSM representations of
documents can be improved by examining the relations between terms either at a
low level, such as terms co-occurrence frequency, or at a higher semantic similarity
level.

Among the popular approaches is the Latent Semantic Indexing (LSI) [7] that
solves an eigenproblem using Singular Value Decomposition (SVD) to determine a
proper feature space to project data. Concept Indexing [16] computes a k-partition
by clustering the documents, and then uses the centroid vectors of the clusters as
the axes of the reduced space. Similarly, Concept Decomposition [8] approximates
in a least-squares fashion the term-by-document data matrix using centroid vec-
tors. A more simple but quite efficient method is the Generalized Vector Space
Model (GVSM) [31]. GSVM represents documents in the document similarity
space, i.e. each document is represented as a vector containing its similarities to the
rest of the documents in the collection. The Context Vector Model (CVM-VSM)
[5] is a VSM-extension that describes the semantics of each term by introducing a
term context vector that stores its similarities to the other terms. The similarity
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between terms is based on a document-wise term co-occurrence frequency. The
term context vectors are then used to map document vectors into a feature space
of equal size to the original, but less sparse. The ontology-based VSM approaches
[13, 15] map the terms of the original space onto a feature space defined by a hi-
erarchically structured thesaurus, called ontology. Ontologies provide information
about the words of a language and their possible semantic relations, thus an effi-
cient mapping can disambiguate the word senses in the context of each document.
The main disadvantage is that, in most cases, the ontologies are static and rather
generic knowledge bases which may cause heavy semantic smoothing of the data.
A special text representation problem is related to very short texts [14, 25].

In this work, we present the Global Term Context Vector-VSM (GTCV-VSM)
representation which is an entirely corpus-based extension to the traditional VSM
that incorporates contezrtual information for each vocabulary term. First, the local
context for each term occurrence in the term sequences of documents is captured
and represented in vector space by exploiting the idea of the Locally Weighted
Bag of Words [18]. Then all the local contexts of a term are combined to form its
global context vector. Global context vectors constitute a semantic matriz which
efficiently maps the traditional VSM document vectors onto a semantically richer
feature space of same dimensionality to the original. As indicated by our exper-
imental study, in the new space, superior clustering solutions are achieved using
well-known clustering algorithms such as the spherical k-means [8] or spectral
clustering [24].

The rest of this paper is organized as follows. Sect 2 provides some background
on document representation using the Vector Space Model. In Sect 3, we describe
recent approaches for representing a text document using histograms that describe
the local context at each location of the document term sequence. In Sect 4, we
present our proposed approach for document representation. The experimental
results are presented in Sect 5, and finally in Sect 6, we provide conclusions and
directions for future work.

2 Document Representation in Vector Space

In order to apply any clustering algorithm, the raw collection of N text documents
must be first preprocessed and represented in a suitable feature space. A standard
approach is to eliminate trivial words (e.g. stopwords) and words that appear
in a small number of documents. Then, stemming [26] is applied, which aims to
replace each word by its corresponding word stem. The V derived word stems
constitute the collection’s term vocabulary, denoted as V={v1,...,vy}. Thus, a
text document, which is a finite term sequence of T" vocabulary terms, is de-
noted as d*“?1=(d®*®1(1),...,d**?(T)), with d°®?(i) € V. For example, the phrase
‘The dog ate a cat and a mouse!’ is a sequence d°°?=(dog, ate, cat, mouse).

2.1 The Bag of Words Model
According to the typical VSM approach, the Bag of Words (BOW') model, a docu-

ment is represented by a vector d € RY, where each word term v; of the vocabulary
is associated with a single vector dimension. The most popular weighting scheme
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is the nmormalized tfxidf that introduces the inverse document frequency as an
external weight to enforce the terms that have discrimination power and appear
in a small number of documents. For the v; vocabulary term, it is computed as
idf;=log(N/df;), where N denotes the total number of documents and df; denotes
the document-frequency, i.e. the number of documents that contain term v;. Thus,
the normalized t f xidf BOW vector is a mapping of the term sequence d°¢? defined
as follows

Bpow : d°Y — d = h- (tf1 idf1,... tfv idfv)" e RY, (1)

where normalization is performed with respect to the Euclidean norm using the
coefficient h. The document collection can then be represented using the N doc-
ument vectors as rows in the Document-Term matriz D, which is a N xV matrix
whose rows and columns are indexed by the documents and the vocabulary terms,
respectively.

In the VSM there are several alternatives to quantify the semantic similarity
between document pairs. Among them, Cosine similarity has shown to be an
effective measure [11] and for a pair of document vectors d; and d; is given by

d; d;

Tallan € O (2)

SiMeos(di, dj) =
Unit similarity value implies the two documents are described by identical dis-
tributions of term frequencies. Note that this is equal to the dot product d; d; if
document vectors are normalized in the unit positive V-dimensional hypersphere.

2.2 Extensions to VSM

The BOW model, despite having a series of advantages, such as generality, and
simplicity, it cannot model efficiently the rich semantic content of text. The Bag
Of Phrases model uses phrases of two or three consecutive words as features.
Its disadvantage is the fact that it has been observed that as phrases become
longer they obtain superior semantic value, but at the same time, they become
statistically inferior with respect to single-word representations [19]. A category
of methods developed aiming on tackling this difficulty recognize the frequent
wordsets (unordered itemsets) in a document collection [3, 10], while the method
proposed in [20] exploits the frequent word subsequences (ordered) that are stored
in a Generalized Suffix Tree (GST) for each document.

Modern variations of VSM are used to tackle the difficulties occurring due to
HDS spaces, by projecting the document vectors onto a new feature space called
concept space. Each concept is represented as a concept vector of relations between
the concept and the vocabulary terms. Generally, this approach of document map-
ping can be expressed as

Pysy:d—d =SdeRY, V' <V, (3)

where the V'xV matrix S stores the concept vectors as rows. This projection
matrix is also known as semantic matriz. The Cosine similarity between two nor-
malized document images in the concept space can be computed as a dot-product

sim{eo) (di, d) = (Sd;) " (Sd;) = (hi Sdi)T (k] Sd;) = hi k5 (d] STSd;),  (4)
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where the scalar normalization coefficient for each document is b5 =1/||Sd;]||2. The
similarity defined in Eq. 4 can be interpreted in two ways: i) as a dot product of
the document images (Sd;)"(Sd;) that both belong to the new space R and ii)
as a composite measure that takes into account the pairwise correlations between
the original features expressed by the matrix S™S.

There is a variety of methods proposing alternative ways to define the semantic
matrix though many of them are based on the above linear mapping. The widely
used Latent Semantic Indexing (LSI) [7] projects the document vectors onto a
space spanned by the eigenvectors corresponding to the V' largest eigenvalues
of the matrix D™ D. The eigenvectors are extracted by the means of Singular
Value Decomposition (SVD) on matrix DT and they capture the latent semantic
information of the feature space. In this case, each eigenvector is a different concept
vector and V' is a user parameter much smaller than V, while there is also a
considerable computational cost to perform the SVD. In Concept Indexing [16], the
concept vectors are the centroids of a V/-partition obtained by applying document
clustering. In [9], statistical information such as the covariance matrix is combined
with traditional mapping approaches in to latent space (LSI, PCA) to compose a
hybrid vector mapping.

A computationally simpler alternative that utilizes the Document-Term Matrix
D as a semantic matrix is the Generalized Vector Space Model (GVSM) [31], i.e.
Sgvsm=D and the image of a document is given by d’=Dd. By examining the
product Dd € RV*! we can conclude that a GVSM projected document vector
d’" has lower dimensionality if N<V. Moreover, if both d and D are properly
normalized, then image vector d’ consists of the N Cosine similarities between
the document vector d and the rest of the N—1 documents in the collection.
This observation implies that the GVSM works in the document similarity space
by considering each document as a different concept. On the other hand, the
respective product Sgysm Sguvsm=D "D (used in Eq. 4) is a V xV Term Similarity
Matriz whose r-th row has the dot-product similarities between term v, and the
rest of the V—1 of vocabulary terms. Note that terms become more similar as
their corresponding normalized frequency distributions into the N documents are
more alike. Based on the GVSM model, it is proposed in [1] to build local semantic
matrices for each cluster during document clustering.

A rather different approach proposed in [5] for information retrieval is the Con-
text Vector Model (CVM-VSM) where, instead of a few concise concept vectors,
it computes the context in which each of the V' vocabulary terms appears in the
dataset, called term context vector (tcv). This model computes a VxV matrix
Scum containing the term context vectors as rows. Each tcv; vector aims to cap-
ture the V pairwise similarities of term v; to the rest of the vocabulary terms.
Such similarity is computed using a co-occurrence frequency measure. Each matrix
element [Scum]ij stores the similarity between terms v; and v; computed as

1 =17
[chm}ij - Z»,{Vzl th‘Zt.f’f‘j
ZiV=1(thi ’ Z(‘I;L q#i tf?"q)

Note that this measure is not symmetric, generally [Scom]ij # [Scom]ji, due to the
denominator that normalizes the pairwise similarity to [0, 1] with respect to the
‘total amount’ of similarity between term v; and the other vocabulary terms. The

i# . (5)
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rows of matrix Sc,m can be normalized with respect to the Euclidean norm and
each document image is then computed as the centroid of the normalized context
vectors of all terms appearing in that document

14
Beym :d — d' =D tfi-tev, (6)

1=1

where t f; is the frequency of term v;. The motivation for using term context vectors
is to capture the semantic content of a document based on the co-occurrence
frequency of terms in the same document, averaged over the whole corpus. The
CVM-VSM representation is less sparse than BOW. Moreover, weights such as idf
can be incorporated to the transformed document vectors computed using Eq. 6.
In [5] several more complicated weighting alternatives have been tested in the
context of information retrieval that in our text document clustering experiments
did not perform better than the standard idf weights.

In a higher semantic level than term co-occurrences, additional information for
vocabulary terms provided by ontologies has also been exploited to compute the
term similarities and to construct a proper semantic matrix. WordNet [22] and
Wikipedia [30] have been used for this purpose in [6, 15, 29], respectively.

2.3 Discussion

Summarizing the properties of the above mentioned vector-based document repre-
sentations, in the traditional BOW approach, the dimensions of the term feature
space are considered to be independent to each other. Such an assumption is very
simplistic, since there exist semantic relations among terms that are ignored. The
VSM-extensions aim to achieve semantic smoothing, a process that redistributes
the term weights of a vector model, or map data in a new feature space, by tak-
ing into account the correlations between terms. For instance, if the term ‘child’
appears in a document, then it could be assumed that the term ‘kid’ is also re-
lated to the specific document, or even terms like ‘boy’, ‘girl’, ‘toy’. The resulting
representation model is also a VSM, but the document vectors become less sparse
and the independence of features is mitigated in an indirect way. The smoothing
is usually achieved by a linear mapping of data vectors to a new feature space
using a semantic matrix S. It is convenient to think that the new document vector
d'=Sd contains the dot product similarities between the original BOW vector d
and the rows of the semantic matrix S.

A basic difference between the various semantic smoothing methods is related
to the dimension of the new feature space which is determined by the number V'
of row vectors of matrix S. In case their number is less than the size V' of the
vocabulary, such vectors are called as concept vectors and are usually produced
using the LSI method. Each concept vector has a distribution of weights associated
to the V original terms that define their contribution of to the corresponding
concept. Of course the resulting representation of the smoothed vector d’ is less
interpretable than the original and there is always a problem of determining the
proper number of concept vectors.

An alternative approach for semantic smoothing assumes that each row vector
of matrix S is associated with one vocabulary term. Unlike a concept vector that
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describes abstract semantics of higher level, here, the elements of each vector
describe the relation of this term to the other terms. Those relations constitute
the so called term context, thus the respective vector is called term context vector.
Each element of the mapped vector d will contain the dot product similarity
between document d and the corresponding term context vector, i.e. for each term
v; the element d} provides the degree to which the original document d contains
the term v; and its context, instead of just computing its frequency as happens in
the BOW representation. Note also that in BOW representation, a dot product
would give zero similarity for two documents that do not have common terms.
On the contrary, the dot product between a document vector and a term context
vector of a term v; that does not appear in that document may give a non-zero
similarity. This happens if the document contains at least one term v; with non-
zero weight in the context of term v;. For this reason, the smoothed representation
d' is usually less sparse that d and retains their interpretability of dimensions.
Moreover, concept-based methods may be applied on the new representations.

The motivation of our work is to establish the importance of term context
vectors and to define an efficient way to compute them. The CVM-VSM method
considers that the term context is computed based on term co-occurrence fre-
quency at the document-level. It does not take into account the sequential nature
of text and thus ignore the local distance of terms when computing term context.
On the other hand, the GTCV-VSM proposed in this work extends the previous
approach by considering term context at three levels: i) It uses the notion of local
term context vector (ltcv) to model the context around the location in the text se-
quence where a term appears. These vectors are computed using a local smoothing
kernel as suggested in the LoWBOW approach [18] which is described in the next
section. The kernel takes into account the distance in which other terms appear
around the sequence location under consideration. ii) It computes the document
term context vector (dtcv) for each term that summarizes the term context at the
document-level and iii) it computes the final global term context vector (gtcv) for
each term representing the overall term context at corpus-level. The gtcv vectors
constitute the rows of the semantic matrix S. Thus the intuition behind GTCV-
VSM approach is to capture the local term context from term sequences and then
to construct a representation for global term context by averaging ltcvs at the
document and corpus-level.

3 Utilizing Local Contextual Information

A text document can be considered as a finite term sequence of its T’ consecutive
terms denoted as d*“1=(d®*®1(1),...,d**?(T)) but, except for Bag of Phrases, so
far in this paper the previously mentioned VSM-extensions ignore this property.
A category of methods have been proposed aiming to capture local information
directly from the term sequence of a document. The representation proposed in
[27], first considers a segmentation of the sequence that is done by dragging a
window of n terms along the sequence and computing the local BOW vectors
for each of the overlapping segments. All these local BOW vectors constitute the
document representation called Local Word Bag (LWB). To compute the similarity
between a pair of documents, the authors introduce a variant of the VG-Pyramid
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Matching Kernel [12] that maps the two sets of local BOW vectors to a multi-
resolution histogram and computes a weighted histogram intersection.

Another approach for text representation presented in [18], is the Locally
Weighted Bag of Words (LoWBOW ) that preserves local contextual information of
text documents by the effective modeling of the text sequential structure. At first,
a number of L equally distant locations are defined in the term sequence. Each
sequence location ¢;, i=1,..., L, is then associated with a local histogram which
is a point in the multinomial simplex Py _;, where V' is the number of vocabulary
terms. More specifically, for (V —1)>0, the Py _1 space is the (V —1)-dimensional
subset of RY that contains all probability vectors (histograms) over V objects (for
a discussion on the multinomial simplex see the Appendix of [18])

\4
IPV_l{He]RV:HiZO, Vi=1,...,V and ZHil}. (7)

=1

Contrary to LWB, in LoWBOW the local histogram is computed using a
smoothing kernel to weight the contribution of terms appearing around the ref-
erenced location in the term sequence, and to assign more importance to closely
neighboring terms. Denoting as Hgs(gsea(y)) the trivial term histogram of V terms
whose probability mass is concentrated only at the term that occurs at the location
t in d°¢?

1, v =d*()

Li=1,...,V, (8)
0, v #d*°U(t)

[Hs(aseary)]; = {

then the locally smoothed histogram at a location £ in the d°°? term sequence is
computed as in [18]

T
lowbow(d*°?, £) = ZHé(dSW(t))Ke,a(t)» 9)
=1

where T is the length of d°®?. K, »(t) denotes the weight for location ¢ in sequence
given by a discrete Gaussian weighting kernel function of mean value £ and stan-
dard deviation o. Specifically, the weighting function is a Gaussian probability
density function restricted in [1,7] and renormalized so that S/, Ko, (t) = 1.
It is easy to verify that the result of the histogram smoothing of Eq. 9 is also a
histogram.

It must be noted that for =0 the lowbow histogram (Eq. 9) coincides with
the trivial histogram Hs(gsca(g)), where all the probability mass is concentrated at
the term at location £. As o grows, part of the probability mass is transfered to
the terms occurring near location £. In this way, the lowbow histogram at location
¢ is enriched with information about the terms occurring in the neighborhood
of £. The smoothing parameter o adjusts the ‘locality’ of term semantics that is
taken into account by the model. Thus, instead of mining unordered local vectors
as in [27], the LoOWBOW approach embeds the term sequence of a document in
the Py _1 simplex. The sequence of the L locally smoothed histograms (denoted
as lowbow histograms) form a curve in the (V-1)-dimensional simplex (denoted
as LoWBOW curve). Fig. 1 illustrates the LoWBOW curves generated for a toy
example and describes the role of parameter o. In this figure we aim to illustrate i)
the LoWBOW curve representation, i.e. the curve that corresponds to a sequence
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Fig. 1 A toy example where the sequence (v1, va, va, va, vi, V3, V3, V1 V1, V1, V2, V2, V3) is
considered that uses three different terms vy, vz, vz (vocabulary size: V'=3). The subfigures present
LoWBOW curves in the (V —1)-dimensional simplex for increasing values of the parameter o that
induce more smoothing to the curve. Each point of the curve corresponds to a local histogram
computed at a sequence location. The more a term affects the local context at a location in the
sequence, the more the curve point (the lowbow histogram related to that location) moves towards
the respective corner of the simplex. For 0=0 local histograms correspond to simplex corners, thus
the curve moves from corner to corner of the simplex. Two different sampling rates for LoWBOW
representation are illustrated: sampling at every term location in the sequence (dashed line) which
is the our strategy to collect contextual information for each term, and sampling every two terms
(solid line). d) For o=o00, the LoWBOW curve reduces to a single point that coincides with the
BOW histogram of the sequence. In (d) we present as ‘stars’ the average ltcv histograms for each
term (dtcv histograms) for the three different values of o and @=0.6 for all terms. As the value of o
increases, the dtcv histograms of all terms become more similar tending to coincide with the BOW
representation.

of histograms (local context vectors), where each local context vector is computed
at a specific location of the sequence and corresponds to a point in the (V-1)-
dimensional simplex; ii) the impact of the smoothing coefficient o on the computed
local context vectors. This figure illustrates that the increase of smoothing makes
the lowbow histograms (points of the curve) more similar. This can also be verified
by observing that as smoothing increases, the curve becomes more concentrated
around a central location of the simplex. For c=00 all histograms become similar to
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the BOW representation and the curve reduces to a single point. On the contrary,
for 0=0 the histograms correspond to simplex corners.

A similarity measure between LoWBOW curves has been proposed in [18] that
assumes a sequential correspondence between two documents and computes the
sum of the similarities between the L pairs of LoOWBOW histograms. Obviously,
it is expected for this similarity measure to underestimate the thematic similar-
ity between documents that follow different order in the presentation of similar
semantic content.

4 A Semantic Matrix based on Global Term Context Vectors

In this section we present the Global Term Context Vector-VSM (GTCV-VSM) ap-
proach for capturing the semantics of the original term feature space of a document
collection. The method computes the contextual information of each vocabulary
term, that is subsequently utilized in order to create a semantic matrix. In analogy
with CVM-VSM, our approach reduces data sparsity but not dimensionality. The
interpretability of the derived vector dimensions remains as strong as in the BOW
model as the value of each dimension of the mapped vector corresponds to one vo-
cabulary term. Methods that reduce data dimensionality could also be applied on
the new representations at a subsequent phase. Compared to CVM-VSM, GTCV-
VSM generalizes the way the term context is computed by taking into account the
distance between terms in the term sequence of each document. This is achieved
by exploiting the idea of LoOWBOW to describe the local contextual information
at a certain location in a term sequence. It must be noted that our method bor-
rows from the LoWBOW approach only way the local histogram is computed at
each location of the term sequence and does not make use of the LoOWBOW curve
representation.

More specifically, we define the local term context vector (ltcv) as a histogram
associated with the exact occurrence of term d*°?(¢) at location £ in a sequence
d®¢?. Hence, one ltcv vector is computed at every location in the term sequence,
i.e. /=1,...,T. Note that GTCV-VSM does not preserve any curve representation.
This means that we are not interested in the temporal order of the local term
context vectors. The ltcv(d®?, ¢) is a modified lowbow(d*¢?, £) probability vector
that represents contextual information around location ¢, while adjusting explicitly
the self-weight agseq(g) of the reference term appearing at location £

" Qgsea(e) v = d*¢1(L),
[ltcv(d®9, 0)];, =

idf; - [lowbow(d*°?, £)], . se
(1 — adse‘)(f)) : Zy:l)j#l idfj . [lowbow(d”q,e)]j % 7é d q(ﬁ)

(10)
The self-weight (0 < argsea(py < 1) adjusts the relative importance between con-
textual information (computed using the lowbow histogram) and the self-representation
of each term. Fig. 2 illustrates an example of how the value of parameter « affects
the local term weighting around a reference term in a sequence. When the param-
eter o of the Gaussian smoothing kernel is set to zero, or a=1, the ltcv(d®*®?,¥)
reduces to a trivial histogram Hgeea) () (see Eq. 8). The other extreme is the
infinite o value, where for small « values all the ltcv computed in a document d
become similar to the tf histogram for that document.
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Fig. 2 Various weight distributions for the neighboring terms around a reference term occurring in
the middle of a term sequence of length 50. The distributions are obtained by varying the value of
parameter « in Eq. 10. This distribution defines the contribution of each term to the context of the
specific reference term. The scale value of the local kernel is set to o=>5, while self-weight « is set
to 0.05 (left), 0.10 (middle), and 0.2 (right).

The latter observation is the reason for considering an explicit self-weight in
Eq. 10, because a flat smoothing kernel obtained for large o value can make a
lowbow vector to have improperly low self-weight for the reference term. For ex-
ample, if a term appears once in a document, then the lowbow vector with o=00
at that location would contain very low weight for that term. Generally, the value
of a,,, determines how much the context vector of term v should be dominated by
the self-weight of term v. In our method we set this parameter independently for
each individual term as a function of its ¢df, component

idfy
logN

on:)\—i-(l—)\)-(l— ), A€ [0,1], (11)
where X is a lower bound for all a,, v=1,...,V (in our experiments we used
A=0.2). The rationale for the above equation is that for terms with high document
frequency (i.e. low idf, ), we assign high «, values that suppress the local context
in the respective context vectors. In other words, the context is considered more
important for terms that occur in fewer documents. In Fig. 3a, we present an
example illustrating the ltcv vectors of two term sequences presented in Fig. 3c.

We further define the document term context vector (dtcv) as a probability
vector that summarizes the context of a specific term at the document-level by
averaging the [tcv histograms corresponding to the occurrences of this term in the
document. More specifically, suppose that a term v appears no; ,, > 0 times in the
term sequence d;°? (i.e. in the i-th document) which is of length 7;. Then the dicv
of this term v for document ¢ is computed as:

1 Mnoq,v ‘
dtev(di™, v) = o Zl tev(d®?, €0 (5)), (12)
3=
where ¢; ,(j) is an integer value in [1,...,T;] denoting the location of the j-th

occurrence of v in d;%
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Local term context histograms (columns) Local term context histograms (columns)
for document A for document B

advanc:
electron:
commun:
help:
conduct:
busi:
interoper:

problem:

Vocabulary terms
Vocabulary terms

applic:

profession:v10

product:vil
commerc:vli2

secur.vl3

vl v2 v3 v4 v5 v6 v7 v8 v6 V9 v10 v6 v11 vl v7 v2 v12 v9 vi3 v6 v6 v2 v3
Term sequence (2% Term sequence (d°%

(2)

Averaged term context histograms (columns)

advanc:
electron: Term A -
"The advances in electronic communications help in conducting
commun: business without interoperation problems between business
Term B
help: "Our professional buisiness products advance the
interoperability of electrenic commerce applications and security
g conduct: of business-to-business electronic 15"
o] busi: Document A Document B
- BOW | d' | differ. || BOW | d' | differ.
§ in[eroper; advanc 01 0.079 -0.021 0.077 0077 0.000
B electron 01 0085 -0015 0154 0107 -0047
8 problem: commun 01 0085 -0015 0077 0076 -0001
g . help 01 0087 -0013] 0026 0026
appllc: conduct 01 0095 -0005| 0033 0033
. busi 02 0127 -0073 0231 0140 -0090
profession:v10 interoper 01 0089 -0011|| 0077 0073 -0004
problem 01 0098 -0002| 0049 0049
product:vll applic 01 0087 -0013|| 0077 0084 0007
profession 0049 0049 0077 0094 0017
commerc:v1l2 product 0041 0041|| 0077 0083 0006
. commerc 0030 0030 0077 0072 -0005
securvl3 secur 0047 0047]| 0077 0088 0011

vli v2 v3 v4 V5 v6 v7 v8 v9 vi0vll vi2 vi3
Vocabulary terms

(b) (c)

Fig. 3 An example of how ltcv histograms are used to summarize the overall context in which a term
appears in the two term sequences of (c) using Eq. 14. a) The term sequences (x-axis) of documents
A, B are presented and the corresponding local term context vectors are illustrated as grey-scaled
columns. Those vectors are computed at every location in the sequence using a Gaussian smoothing
kernel with o=1 and a=0.6 for all terms. Brighter intensity at cell 4, j indicates higher contribution of
the term v; to the local context of the term appearing at location j in the sequence. b) The resulting
transposed semantic matrix (ST), where the grey-scaled columns illustrate the global contextual
information for each vocabulary term computed by averaging the respective local context histograms
(Eq. 13). ¢) The two initial term sequences (the stem of each non-trivial term is emphasized).
Assuming the same idf weight for each vocabulary term, the table presents the BOW vector, the
transformed vector d’ using Eq. 14 as well as the effect of semantic smoothing (diff =BOW —d’) on
document vectors. The redistribution of term weights that results by the proposed mapping reveals
is done in such a way that low frequency terms are gaining weight against the more frequent ones.
Note also that the similarity between the two documents is 0.756 for the BOW model and 0.896 for
the GTCV-VSM.
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Next, the global term context vector (gtcv), is defined for a vocabulary term
v so as to represent the overall contextual information for all appearances of v in
the corpus of all N term sequences (documents).

N
gtev(v) = hgteo(v) <Z tfi0 dtcv(d;9, y)) (13)

=1

The coefficient h gy, () normalizes the vector gtcv(v) with respect to the Euclidean
norm, and tf;, is the frequency of the term v in the i-th document. Thus, the
gtcu(v) of term v is computed using a weighted average of the document context
vectors dtcv(d;°?, v) obtained for each document 4 in which term v appears. Thus,
in contrast to LoWBOW curve approach which focuses on the sequence of local
histograms that describe the writing structure of a document, our method focuses
on the extraction of the global semantic context of a term by averaging the local
contextual information at all the corpus locations where this term appears.

Finally, the extracted global contextual information is used to construct the
VxV semantic matrix Sgic, where each row v is the gtcv(v) vector of the cor-
responding vocabulary term v. Fig. 1d provides an example of illustrating the
dtcv(d;®?, v) vectors for each document (the points denoted as ‘stars’). Fig. 3b il-
lustrates the final gtcv vectors obtained by averaging the document-level contexts
for each vocabulary term.

To map a document using the proposed Global Term Context Vector-VSM
approach, we compute the vector d where each element v is Cosine similarity
between the BOW representation d of the document and the global term context
vector gtcv(v):

Bytev :d— d = Sgiepd, d €RY. (14)

Note that the transformed document vector d’ is V-dimensional that retains the
interpretability, since each dimension still corresponds to a unique vocabulary
term. Moreover, if 0=0 and a>0, then Syico d=d. Looking at Eq. 4, the product
Sgtev Sgtcv essentially computes a Term Similarity Matrix where the similarity
between two terms is based on the distribution of term weights in their respec-
tive global term context vectors, i.e., on the similarity of their global context
histograms. The table of Fig. 3c illustrates the effect of redistribution (compared
to BOW) of the term weights (semantic smoothing) in the transformed document
vectors achieved by the proposed mapping.

The procedure of representing the input documents using GTCV-VSM takes
place in the preprocessing phase. Let T; the length of the i-th document and V;
its vocabulary. Let also V' the size of the whole corpus vocabulary. Then the cost
to compute one Itcv vector at a location of the term sequence using Eq. 10, and to
add its V; non-zero dimensions to the respective dtcv, is O(T;4V;). This is done
T; times and the final dtcv of each different term of the document is added to the
respective the gtcv rows. Thus, using proper notation for the average length T; and
vocabulary size V; of the documents in a corpus, the cost of constructing the se-
mantic matrix can be expressed as O(N-Ti- (Tﬁzﬁ)) However, since V;<T; <V,
the overall computational cost of the GTCV-VSM is determined by the O(N-V?)
cost of the matrix multiplication of the mapping of Eq. 14.
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Table 1 Characteristics of text document collections. N denotes the number of documents, V is
the size of the global vocabulary and V; the average document vocabulary, Balance is the ratio of
the smallest to the largest class and T; is the average length of the term sequences of documents.

’NameH Topics ‘Classes N ‘Balance

vV | Vi | T:

Dy 20-NGs: graphics, windows.x, motor, baseball, 6]2000| 200/400|4343|48.8|110
space, mideast

Do 20—-NGs: atheism, autos, baseball, electronics, 713500 | 500/500 | 6442 |52.6 | 108

med, mac, motor, politics.misc

~

D3 20-NGs: atheism, christian, guns, mideast 1600 | 400/400 4080 | 62131
Dy 20—-NGs: forsale, autos, baseball, motor, hockey 1250 | 250/250 4762 |44.1|104

Ds Reuters—21578: acq, corn, crude, earn, grain, 10(9979|237/3964 | 5613 |39.1| 76
interest, money-fx, ship, trade, wheat

ot

5 Clustering Experiments

Our experimental setup was based on five different datasets: Di-D4 are subsets
of the 20-Newsgroups', while D5 is the Mod Apte split [2] version of the Reuters-
215782 benchmark document collection where the 10 classes with larger number of
training examples are kept. The characteristics of these datasets are presented in
Table 1. The preprocessing of datasets included the removal of all tags, headers and
metadata from the documents, while applied word stemming and discarded terms
appearing in less than five documents. It is worth mentioning how we preprocessed
the term sequences of documents. We considered a dummy term that replaced in
the sequences all the low-frequency terms that were discarded so as to maintain the
relative distance between the terms that remained in each sequence. For similar
reasons, two dummy terms were considered at the end of every sentence denoted
by characters as (e.g. ‘., ‘7, ‘I’). The dummy term is ignored when constructing
the final data vectors.

For each dataset, we have considered several data mappings @ and after each
mapping the spherical k-means (spk-means) [8] and spectral clustering (spectral-c)
[24] algorithms were applied to cluster the mapped documents vectors into the k
predefined number of clusters corresponding to the different topics (classes) in a
collection. In contrast to k-means that is based on the Euclidean distance [21],
spk-means uses the Cosine similarity and maximizes the Cohesion of the clusters

02{01, .. .,Ck}

k
Cohesion(C) = Z Z u; di, (15)

Jj=ld;€c;

where u; is the normalized centroid of cluster ¢; with respect to the Euclidean
norm.

Spectral clustering projects the document vectors in a subspace which is spanned
by the k largest eigenvectors of the Laplacian matrix L computed from the sim-
ilarity matrix AWXN) of pairwise Cosine similarities between documents. More
specifically, the Laplacian matrix is computed as L:D{L/QADfl/Q7 where D is a

I http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www /data/news20.tar.gz.
2 http://www.daviddlewis.com /resources/testcollections/reuters21578 /reuters21578.tar.gz
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Table 2 NMI values of the clustering solution for VSM (BOW), GVSM, CVM-VSM and the pro-
posed GTCV-VSM (for several values of o) document representations using the spk-means algorithm.

D, D Ds Dy Ds

Method| o avg best avgipy] avg Dbest avgigy| avg Dbest avgigy avg best avg gyl avg best avgi gy
BOW — 1| .722 .821 .594 | .748 .829 .638 | .537 .548 .379 | .625 .779 .505 | .552 .562 .535
GTCV 11| .749 .854 .601 |.767 .845 .638 | .544 .564 .372 | .667 .793 .515 | .570 .578 .561
2 || .756 .871 .631 | .765 .852 .657 | .563 .574 .396 | .670 .832 .539 | .572 .580 .561

5 773 881 .687 | .777 .864 .662 | .577 .602 .400 | .688 .851 .539 | .589 .633 .578

10 777 .886 .685 | .781 .873 .672 | .590 .621 .424 | .684 .849 .540 | .590 .630 .580

30 || .761 .879 .659 | .776 .863 .653 | .579 .590 .369 | .683 .842 518 | .576 .612 .568

inf || .760 .862 .631 | .772 .862 .639 |.574 .586 .366 | .681 .840 .521 | .576 .610 .566

GVSM — || .752 .832 .611 | .747 .822 .637 | .556 .576 .419 | .670 .827 .547 | .575 .580 .573
CVM — || .750 .841 .612 | .754 .851 .659 | .547 .604 .400 | .672 .824 .541 | .578 .581 .575

diagonal matrix. Each diagonal element contains the sum of the i-th row of sim-
ilarities DiizzyzlAij. The next step is the construction of a matrix X V**) =
{z; :i=1, ..., k} whose columns correspond to the k largest eigenvectors of L. The
standard k-means algorithm is then used to cluster the rows of matrix X after be-
ing normalized to unit length in Euclidean space, where the i-th row is the vector
representation of the i-th document in the new feature space.

Clustering evaluation was based on the supervised measure Normalized Mutual
Information (NMI) and the Fi-measure. We denote as nft the number of docu-
ments of class 7, n; the size of cluster 7, n;; the number of documents belonging to
class i that are clustered in cluster j, C9* the grouping based on ground truth labels
of documents ¢{*,..., " (true classes). Let us further denote p(c/*)=n?"/N and
p(cj)=n;/N the probability of selecting arbitrarily a document from the dataset
and that belongs to class cft and cluster cj, respectively, and p(cft7 ¢j)=mnq;/N the
joint of arbitrarily selecting a document from dataset and that belongs to cluster
cj and is of class cft. Then, the [0,1]-Normalized MI measure is computed by
dividing the Mutual Information by the maximum between the cluster and class
entropy:

NMI Cgt,C = cgt7cj lo M max{ H Cgt ,H o).
(@LOI= | 2 Ml elons gy | /et (e, O
c;€C
(16)

When C and C?" are independent, the value of NMI equals to zero, while it equals
to one if these partitions contain identical clusters.

The Fi-measure is the harmonic mean of the precision and recall measures of
the clustering solution:
precision - recall

=

= . 17
precision + recall (17)

Higher values of F} in [0,1] indicate better clustering solutions.

Tables 2, 3, 5, and 6 present the results from the experiments conducted for each
collection. Specifically, we compared the classic BOW representation, the GVSM,
the proposed GTCV-VSM method (with A=0.2 in Eq. 11), that represents the
documents as described in Eq. 14 and the CVM-VSM as proposed in [5], where
document vectors are computed based on Eq. 6 with idf weights. More specifically,
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Table 3 Fi-measure values of the spk-means clustering solution for the different representation

methods.
D, D, Ds3 Dy Ds
Method| o avg best avgipy] avg Dbest avgigy avg Dbest avgigy avg best avg gy avg best avgioy
BOW — || .779 920 .685 | .780 .901 .645 | .703 .706 .570 | .735 .918 .558 | .675 .697 .646
GTCV 11| .806 .940 .688 |.790 .921 .650 | .709 .713 .576 | .755 .920 .561 | .691 .695 .677
2 || .814 .946 .688 | .792 .924 674 | .721 .728 .580 | .764 .938 .598 | .698 .714 .672
5| .828 .953 .722 | .817 .929 .665 | .736 .737 .597 | .773 .948 .611 |.712 .751 .681
10 .832 .954 .733 | .820 .936 .603 | .737 .739 .603 | .773 .947 .581 | .712 .749 .681
30 || .814 .950 .747 | .794 .929 .657 | .725 .727 576 | .766 .944 .579 | .698 .746 .666
inf || .813 .942 689 | .792 .926 .651 | .722 .728 .576 | .765 .944 581 | .698 .744 .666
GVSM — 1| .790 .923 .705 | .783 .903 .640 | .706 .71 576 | 750 .943 .591 | .687 .720 .672
CVM -] .765 .941 .672 | .790 .930 .672 |.708 .725 .576 | .751 .934 .604 | .685 .716 .669
Table 4 The p and t values of the statistical significance t-test of the difference in k-means perfor-
mance using GTCV-VSM (0=10) and the compared representation methods, with respect to the two
evaluation measures. Values of p smaller than the significance level of 0.05 (5%) indicate significant
superiority of GTCV-VSM.
GTCV D, D, D3 Dy Ds
(0=10) vs p-val t-val p-val t-val p-val t-val p-val t-val p-val t-val
BOWynr || 011:107% 598 |.075-107% 4.05 |.025-107° 5.81 | .080-107% 6.45 | .0000 12.8
GVSMn s || 0008 2.68 |.081-107% 4.02 |.050-107% 4.15 | .085 1.73 | .056:107° 5.17
CVMnNMmrT .0051 2.83 | .0010 3.33 |.052-107% 4.65 | .1659 1.39 | .077-1073  4.04
BOW g, .020-107° 5.39 |.050-10"2 3.54 | .046-1072 3.56 | .0010 3.32 | .0000 12.8
GVSM g, .037-107%  4.22 | .0021 3.11 | .067-1072 3.45 | .0329 2.15 | .0000 9.06
CVMp, 0811072 4.02 | .06:107%  6.50 | .0027 3.04 | .0314 2.18 | .0000 9.31
Table 5 NMI values of the clustering solution for VSM (BOW), GVSM, CVM-VSM and the pro-
posed GTCV-VSM (for several values of o) document representations using the spectral clustering
algorithm.
D D> D3 Dy D5
Method| o avg best avgipy] avg Dbest avgigy avg Dbest avgigy avg best avg gy avg best avgioy
BOW — 1| .753 .761 .750 | .781 .788 .737 | .569 .585 .555 | .718 .780 .631 | .558 .559 .506
GTCV 11| .770 774 .769 | .790 .795 .750 | .614 .626 .600 | .735 .779 .642 | .560 .561 .516
2 || .781 .785 .760 | .790 .794 .757 | .625 .632 .601 | .752 .789 .649 | .562 .564 .523
5| .794 .804 .790 | .833 .853 .763 | .639 .640 .619 | .768 .827 .669 |.579 .600 .557
10 .807 .814 .801 | .833 .853 .761 | .645 .648 .620 | .758 .819 .661 | .581 .589 .558
30 || .791 .796 .769 | .807 .832 .743 | .613 .613 .609 | .755 .797 .647 | .567 .582 .535
inf || .774 782 767 | .794 .794 .722 | .619 .619 .610 | .749 .793 .637 | .560 .568 .530
GVSM — || .756 .770 .702 | .794 .830 .747 | .593 .595 .586 | .722 .780 .637 | .548 .554 .513
CVM -] .761 .768 .751 | .801 .823 .760 | .605 .606 .590 | .728 .794 .642 | .557 .566 .519

for each collection, each representation method was tested for 100 runs of spk-
means (Tables 2, 3) and spectral-c (Tables 5, 6). To provide fair comparative
results, for each document collection all methods were initialized using the same
random document seeds. The average of all runs (avg), the average of the worst
10% of the clustering solutions (avg;gy ), and the best values are reported for each
performance measure. The worst 10% concerns the 10% of the solutions with the
lowest Cohesion, while the best clustering solution is that having the maximum
Cohesion in the 100 runs (for spectral-c the sum of squared distances is considered
for this purpose). Moreover, in Fig. 4 we present the average clustering performance
of spk-means with respect to the value of A parameter of Eq. 11 where, although
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Table 6 F;-measure values of the spectral clustering solution for the different representation meth-
ods.

D1 D2 D3 D4 D5
Method| o avg best avgigy] avg Dbest avgigy avg Dbest avgigy avg best avg oy avg best avgigy
BOW - || .801 .811 .780 | .819 .822 .767 |.710 .723 .701 | .808 .911 .697 | .666 .669 .654
GTCV 11| .811 .819 .809 | .822 .832 .772|.729 .741 .728 | .834 .915 .722|.694 .703 .663
2 || .818 .823 .806 | .837 .841 .779 | .733 .746 .732 | .865 .922 .725| .689 .703 .652
5| .837 .840 .818 | .887 .927 .792 | .744 .756 .737 | 870 .930 .740 | .716 .727 .647
10 .840 .842 .826 | .890 .925 .788 |.754 .759 .742 | .865 .929 .736 | .710 .725 .654
30 || .823 .826 .809 | .856 .886 .769 | .726 .735 .725| .864 .925 .705|.704 .701 .642
inf || .814 .817 .806 | .826 .832 .734 | .728 .735 .729 | .859 .922 .703 | .692 .686 .653
GVSM — 1| .756 .770 .702 | .826 .901 .780 | .709 .714 .724 | .823 .916 .705 | .642 .657 .654
CVM — || .761 .768 779 | .831 .897 .791 | .725 .725 .723 | .825 .916 .713 | .673 .678 .654

Table 7 The p and t values of the statistical significance t-test of the difference in spectral clustering
performance using GTCV-VSM (¢=10) and the compared representation methods, with respect to
the two evaluation measures. Values of p smaller than the significance level of 0.05 (5%) indicate
significant superiority of GTCV-VSM.

GTCV D1 D2 D3 D4 D5
(0=10) vs p-val t-val p-val t-val | p-val t-val p-val t-val | p-val t-val
BOWnN w1 .0000 27.3 | .0000 13.8 | .0000 620. |.026-10"% 4.85 | .0000 8.03
GVSMpyar || -0000  16.7 | .0000 7.51 |.0000 130. |.129-107° 4.99 |.0000 12.1
CVMnNwMT .0000 19.3 | .150-107% 6.35 | .0000 138. | .316-107% 3.67 | .0000 8.83
BOWF, .0000 24.1 | .0000 11.4 |.0000 875. |.123-107% 4.48 | .0000 19.1
GVSMp, .0000 15.1 | .0000 7.53 | .0000 410. |.113-1072 3.31 |.0000 30.7
CVMF, .0000 18.7 | .0000 7.11 |.0000 268. | .115-107% 3.94 |.0000 14.1

not best for all cases, the value 0.2 we used seems to be a reasonable choice for
all the datasets we have considered. Note that similar effect was observed for
spectral-c method.

In order to illustrate the statistical significance of the obtained results, the
well-known t-test was applied for each dataset to determine the significance of the
performance difference between our methods and the compared methods. We have
considered the case where 0=10 for the Gaussian kernel for all datasets. Within
a confidence interval of 95% and for the value of degrees of freedom equal to 198
(for two sets of 100 experiments each), the critical value for ¢ is t.=1.972 (p.=5%
for p value). This means that if the computed t>t., then the null hypothesis
is rejected (p>5%, respectively), i.e. our method is superior, otherwise the null
hypothesis is accepted. As it can be observed from the results of the statistical
tests for spk-means presented in Table 4, the performance superiority of GTCV-
VSM is clearly significant in four out of five datasets with respect to all other
methods. For dataset D4 the tests indicate that GTCV-VSM, although still better
than BOW, has less significant difference in performance compared to GVSM and
CVM-VSM. Table 4 provides the respective t-test results for the spectral-c method
where, also due to the lower standard deviation of the results using all document
representation methods, the GTCV-VSM demonstrates significantly better results
than the compared representations.

The experimental results indicate that our method outperforms the traditional
BOW approach in all cases, even for small values of smoothing parameter o (e.g.
o=1 or 2). This substantiates our rationale that the clustering procedure is assisted
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Fig. 4 The effect of varying the parameter A on the spk-means clustering performance for each
dataset. Eq. 11 is used to determine the term self-weight «, when computing the ltcv histograms.

by the proposed semantic smoothing which takes into account the local contextual
information associated with a term occurrence. GTCV-VSM requires moderate
values for the parameter o to achieve better performance. The same is observed
for the quality (in terms of NMI or F1) of the best solution (i.e. the one with
maximum Cohesion) found in the 100 runs, where moderate values of o (i.e. =5
or 10) result in better GTCV-VSM performance. Moreover, the clustering results
for a wide range of values of the smoothing parameter ¢ indicate that the method is
quite robust to the specification of this parameter. GTCV-VSM behaves similarly
to BOW when a low value is set for o, while when this value becomes very high the
discriminative information of the global term context vectors is reduced. This was
demonstrated using spk-means and spectral clustering methods. Among them, the
latter in all cases except from Ds presented better average clustering solutions in
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terms of both evaluation measures NMI and F, while interestingly, spk-means was
superior in terms of the best clustering solutions in most cases (with the exception
of D3) despite operating in a feature space of a much larger size.

6 Conclusions

We have presented the Global Term Context Vector-VSM (GTCV-VSM) docu-
ment representation, an extension to the Vector Space Model that determines a
proper feature space to project the typical VSM document vector representations.
Our approach is entirely corpus-based and operates in the preprocessing in a se-
quence of four steps: i) captures local contextual information associated with each
term occurrence in the term sequences of documents; ii) summarizes the local
context vectors of each term into the respective global term context vectors; iii)
constructs the semantic matrix for a problem using the global term context vec-
tors; and finally iv) projects documents using the semantic matrix. The proposed
approach achieves semantic smoothing by reducing data sparsity, while retaining
the original dimensionality. The derived representation maintains the initial in-
terpretability since each dimension is associated with a single vocabulary term.
In the experimental document clustering study, we compared the proposed rep-
resentation with the typical VSM, the Generalized-VSM and CVM-VSM, using
Cosine similarity. The statistical analysis of the obtained results indicates that
GTCV-VSM assists well-known clustering algorithms, such as spherical k-means
and spectral clustering, to achieve better clustering solutions compared to other
representation methods.

Our plans for future work are to investigate the potential of combining the
local and global contextual information associated with terms to explore ways of
building compact concept vectors, to efficiently project the transformed document
vectors in feature spaces of lower dimensionality and to perform a systematic study
for procedures that could efficiently compute «, parameters (Eq. 13) for each
vocabulary term, which could improve the global term context vectors. Finally, we
aim at examining the proposed representation for document classification.
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