
Multivariate Hawkes Processes for Large-scale Inference

APPENDIX

Rémi Lemonnier1,2 Kevin Scaman1,3 Argyris Kalogeratos1

1 CMLA – ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
2 Numberly, 1000Mercis group, Paris, France

3 Microsoft Research – Inria Joint Center, Palaiseau, France
{lemonnier,scaman,kalogeratos}@cmla.ens-cachan.fr

Abstract

This is a document containing material that constitutes the Appendix for the paper entitled as shown
above, which has been published in the 31st AAAI Conference on Artificial Intelligence (2017). The
included supplementary material consists of: i) an index with the basic notation used in the paper,
ii) a detailed formula of the log-likelihood of our model, iii) algorithmic details regarding our inference
procedure, iv) technical proofs.

Appendix: supplementary material

A. Index of notations

Symbol Description

d number of event types, i.e. dimensions of the multivariate Hawkes process
r rank of the low-dimensional approximation
n number of events of all realizations of the LRHP process
K number of triggering kernels

G= {V, E} a network of d nodes, node set V and edge set E
A network’s adjacency matrix
∆ maximum node degree of G

u, v= 1, ..., d indices on dimensions of the original space
i, j= 1, ..., r indices on dimensions of the low-dimensional embedding
P d× r event type-to-group projection matrix

N(t) = [Nu(t)]u d-dimensional counting process (t≥ 0, u= 1, ..., d)
λu(t) non-negative occurrence rate for event type u at time t
µu(t) natural occurrence rate for event type u at time t
gvu(∆t) kernel function evaluating the affection of λu due to events of type v at time distance ∆t

α, β parameters of the triggering kernels
γ, δ hyperparameters of the triggering kernels

h= 1, ..., H realizations of the LRHP process (d-dimensional)
m= 1, ..., nh events of the realization h, which may belong to any event type

Hh history of (thm, u
h
m)

nh
m=1 events of the realization h, indicating (time of event, event type)

H collection of the event histories of all H realizations
σ maximum number of event types involved in a realization

B,D tensors with four and five dimensions, respectively, introduced to simplify our inference algorithm

Table 1. Index of main notations.

1

{lemonnier, scaman, kalogeratos}@cmla.ens-cachan.fr

B. Formula for the log-likelihood

Following a simple calculation, Eq. 3 and Eq. 4 of the article lead to this analytic expression for the log-
likelihood, which was left to the Appendix due to space constraints:

L(P,H;µ, g) =

H∑
h=1

 nh∑
m=1

ln

 r∑
i=1

Puh
mi
µ̃i(t

h
m) +

∑
i,j

∑
l: thl <t

h
m

Puh
mi
Puh

l j
Auh

l u
h
m
g̃ji(t

h
m − thl)


−
∑
u,i

Pui

∫ Th
+

Th
−

µ̃i(s)ds−
∑
u,v,i,j

Pui Pvj Avu

∫ Th
+

Th
−

g̃ji(s− thm)ds

.
(1)

C. Details on the inference algorithm

Computing B and D tensors. In order for the inference algorithm to be tractable, special attention has
to be paid to the computation of B and D tensors. Alg. 2 describes the computation of the sparse tensors
B = (Bh,u,v,k) and D = (Dh,m,u,v,k).

Algorithm 2 Construction of D and B tensors

Initialize j = 0
for all h do

Initialize (Ckv = 1{v=d+1})v≥0,k≥0 ; th0 = Th− ; (B′h,u,k = 0)u≥0,k≥0

B′h,d+1,k ←
1−exp(−kγ(Th

+−T
h
−))

kγ

for all m ∈ [1...nh] do
dt← thm − thm−1

for all k,v s.t Ckv > 0 do
Ckv ← Ckv exp(−1{v>0}(k + 1)δdt− 1{v=0}γdt)

end for
for all k do
Dh,m,u,v,k ← 1{u=um}

∑
v≥0AumvC

k
v

B′h,um,k ← B′h,um,k +
1−exp(−kδ(Th

+−t
h
m))

kδ

Ckum
← Ckum

+ 1
end for
j ← j + 1

end for
Bh,u,v,k ← AuvB

′
h,v,k

end for
return B, D

The most expensive operation in this algorithm is the multiplicative update of all Ckv with the exponential
decay exp(−(k+1{v>0})γdt). Fortunately, this update only has to be performed for every node v that
already appeared in the cascade, which are at most σ ≤ d (by definition). The complexity of this operation
is therefore O(nKσ). The number of non-zero elements of D and B is O(nK min(∆, σ)), where ∆ is the
maximum number of neighbors of a node in the underlying network G. If G is sparse, which is usually the
case for social networks for instance, then ∆� d and therefore O(nK∆)�O(nKd).

Thus, storing and computing B and D is tractable for large dense graphs and for particularly large
sparse graphs. Note that, since computing the log-likelihood requires the computation of occurrence rates
at each event time, which depends on the occurrences of all preceding events, the linear complexity in the
number of events is only possible because of the memoryless property of the decomposition over a basis of
exponential functions. Otherwise, the respective complexity would have been at least Θ(

∑H
h=1 n

2
hKσ), with∑H

h=1 n
2
h�n.

D. Proof of Proposition 1

For this proof we will make use of the concept of auxiliary functions.

2

Definition 1. Let g : X 2→R is an auxiliary function for f : X →R iff ∀(x, y)∈X 2, g(x, y)≥ f(x) and
∀x∈X , g(x, x) = f(x).
The reason why these functions are an important tool for deriving iterative optimization algorithms is given
by the following lemma.

Lemma 1. If g is an auxiliary function for f , then

f
(

argmin
x
g(x, y)

)
≤ f(y). (2)

Proof. Let z= argminx g(x, y). Then

f(z) = g(z, z) ≤ g(z, y) ≤ g(y, y) = f(y).

where the first inequality comes from the definition of g and the second from the definition of z.

Therefore, if an auxiliary function g is available, constructing the sequence yt+1 = argminx g(x, yt) that
verifies f(yt+1)≤ f(yt) for all t constitutes a candidate method for finding the minimum of f . In our case,
we are able to make use of the following result.

Lemma 2. Let f(p) = −
∑K
k=1 ln

(
p>Ξkp

)
+p>Ψp where p ∈ RK+ , Ξ1, ..., ΞKare positive symmetric matrices

and Ψ is a symmetric matrix, then an auxiliary function for f is the following:

g(p, q) =−
K∑
k=1

(
2q>Ξk[q ln(p/q)]

q>Ξkq
+ ln

(
q>Ξkq

))
+ q>Ψ[p2/q] (3)

In the lemma above, the vectors [q ln(p/q)] and [p2/q] are to be understood as coordinate-wise operations,
i.e. (qi ln(pi/qi))i and (p2

i /qi)i.

Proof. It is clear that g(p, p) = f(p) so the proof reduces to showing that g(p, q)≥ f(p). Let k ≤ K. By
concavity of the logarithm function, we have for every weight matrix (αij)ij such that

∑
i,j αij = 1,

ln
(
p>Ξkp

)
≥
∑
i,j

αij ln

(
piΞ

k
ijpj

αij

)
.

Note that the right-hand side term of the equation is well-defined because of the positivity constraint imposed
on each Ξkij . By choosing αij = qiΞ

k
ijqj/q

>Ξkq, and using the symmetry of Ξk, we get:

ln
(
p>Ξkp

)
≥ 2q>Ξk[q ln(p/q)]

q>Ξkq
+ ln

(
q>Ξkq

)
.

For the right-hand side of the above equation, we use the fact that for every i, j it holds:

pipj ≤
p2
i qj
2qi

+
p2
jqi

2qj
,

and the symmetry of Ψ, in order to conclude that p>Ψp≤ q>Ψ[p2/q].

Using Lemma 2, we are now in position to prove Proposition 1 by showing that the proposed update
pt+1 is indeed the global minimum of g(p, pt). g being the sum of univariate convex functions of the pi, it is
sufficient to show that for every i, the partial derivative of g(p, pt) with respect to pi vanishes in pt+1

i . We
therefore need:

−
∑
k

pti(Ξ
kpt)i

pt+1
i pt>Ξkpt

+
pt+1
i (Ψpt)i

pti
= 0,

which only positive solution is given by:

pt+1
i = pti

(∑
k

(Ξkpt)i

pt>Ξkpt(Ψpt)i

)1/2

. (4)

Finally, if p is a stable fixed point of Eq. 4, then, by definition, there exists ε > 0 such that, ∀p′ s.t.
||p − p′||2 ≤ ε, the iterative algorithm starting at p0 = p′ converges to p. However, since f is continuous, a
simple iteration of the inequality of Lemma 1 implies that f(p′) ≥ f(p1) ≥ ... ≥ limt→+∞ f(pt) = f(p), and
p is a local minimum of f .

3

