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Abstract—In this paper we consider the task of detecting
abnormal communication volume occurring at node-level in com-
munication networks. The signal of the communication activity
is modeled by means of a clique stream: each occurring com-
munication event is instantaneous, and activates an undirected
subgraph spanning over a set of equally participating nodes.
We present a probabilistic framework to model and assess the
communication volume observed at any single node. Specifically,
we employ non-parametric regression to learn the probability
that a node takes part in a certain event knowing the set of
other nodes that are involved. On the top of that, we present a
concentration inequality around the estimated volume of events
in which a node could participate, which in turn allows us to build
an efficient and interpretable anomaly scoring function. Finally,
the superior performance of the proposed approach is empirically
demonstrated in real-world sensor network data, as well as using
synthetic communication activity that is in accordance with that
latter setting.

Index Terms—Anomaly detection, probabilistic models, com-
munication networks, sensor networks, internet-of-things, link
streams, graph signals.

I. INTRODUCTION

Monitoring the activity in communication networks has
become a popular area of research and particular attention has
been paid to detection tasks such as spotting events or anoma-
lies. An effective way to represent the communication activity
is via a dynamic graph where the entities are considered to
be nodes, and each communication event (or more simply
event) to be represented by a set of connecting edges that
appear at a specific time interval. Multiple occurring events
over time may be seen as a link stream [1] with fast creation
and deletion of edges. The use of this representation is mainly
motivated by the fact that, in reality, content-specific features
of the communicated messages are usually kept undisclosed so
as to preserve privacy. Consequently, most studies on activity
monitoring merely deal with linkage information, i.e. who
communicated with whom and at which time; the body of
work on anomaly detection is not an exception.

The anomaly detection task on graph-related activity can
refer to the node-, the subgraph-, or the whole graph-level [2].
To the best of our knowledge, the existing methods consider
time-aggregated representations of the dynamic graph. It has
been proposed to work with time-series of static graphs, each
of them summarizing the link stream during a time interval.
In other words, each edge weight of a static graph is a

function of the number of events occurring between two nodes
during that time interval. Modeling the weights’ evolution with
counting processes [3, 4] is among the standard approaches.
The main drawback of any aggregated representation is that
it neglects events that involve more than two nodes (e.g. mul-
tiple receivers). Besides, a common limitation of the existing
literature is the assumption that the communication volume is
generated by a stationary underlying distribution.

In this work, we focus on the detection of abnormal commu-
nication volume at node-level, which is particularly interesting
as a change in the behavior of a node may reveal various types
of abnormality (e.g. account hack, antenna breakdown, etc.).
We put forward a content-agnostic approach supposing access
solely to the linkage information observed at each event, that
is the set of the involved nodes. The conceptual novelty of our
approach is that, contrarily to our predecessors that use time-
aggregated representations, we model the activity as a clique
stream. We track each event independently, we consider it to
be instantaneous and thus to activate an undirected subgraph
spanning over the set of equally participating nodes, i.e. there
are no special roles such as sender and receivers. Hence, we
can represent each event with a binary fingerprint indicating
the involved nodes. Subsequently, we propose to statistically
model and infer the probability that a node takes part in
an event, knowing the observed event fingerprint indicating
the other participating nodes. The assumption is that there is
a pattern in the fingerprints of the events in which a node
participates. This pattern results from the underlying network
structure since it is natural for subsets of neighboring nodes
to participate frequently together in events.

This modeling allows us to derive confidence levels for
the communication volume to which a node participates in a
time interval. Our detection approach has two strong aspects.
First, it allows the time-series of the node’s communication
volume to be non-stationary, since it only assumes regularity in
the corresponding event fingerprints. Specifically, knowing the
fingerprint of an event for all nodes but for a reference node,
then the conditional probability that this node takes part in that
event is constant over time, whereas the marginal probability
that the node could participate in the event is not necessarily
constant. Second, the anomaly score that our approach outputs
is easily interpretable as it is simply based on the prediction
error of a regression function.



II. RELATED WORK

In the literature, the existing detection methods for ab-
normal node communication volume mostly analyze a time-
aggregated representation of the actual dynamic graph of com-
munication activity. This implies a time-series of static graphs
{At}Tt=1, where At ∈RN×N is the weighted adjacency matrix
representing all the shared communication events between
pairs of nodes at in the time interval t∈{1, ...,T}, and N
is the total number of nodes in the network. Most methods
do not consider self-edges and therefore require each At to
have zero diagonal. Since these methods consider node-to-
node communication events, note that the weighted degree of
a node according to At gives also the total number of events
observed at a node in the time interval t. The multivariate time-
series of the total number of events occurring in the network
over time can be written as {Mt}Tt=1. This is the variable
of our interest which we would like to know when it gets
abnormal values.

A feature-based approach for detecting anomalies in such
time-series of graphs, is to compute several graph features
for each At, such as the node degree or centrality, and then
apply standard anomaly detection techniques on the derived
multivariate time-series of these features [5, 6, 7]. More
generally, the literature of anomaly detection in time-series
of graphs varies in three aspects:

• Availability of data labels: Semi-supervised (access to
a dataset of normal system operation) [8, 9, 10] or
unsupervised (no label available) [11, 12].

• Type of the utilized method: Probabilistic model-based [3,
4, 13, 14, 15, 16, 17], distance based [11], decomposition-
based [18, 19], compression-based [12], etc.

• Scale of abnormality: Node/Edge-level [3, 20], subgraph-
level [17], or whole network-level [4].

The reader should refer to [2] for a more detailed survey on
anomaly detection in dynamic graphs.

As in [3, 21, 22], our work assumes a semi-supervised
setting and proposes a model-based approach for node-level
anomaly detection. Moreover, as in [4], graph edges are
considered to be undirected, and each event to be shared by
two or more nodes without distinguishable roles (e.g. sender
and receivers).

In [1], the link stream framework is presented for the
representation of a dynamic graph as a stream where edges are
being created and removed. Therein, the nodes are assumed
to be fixed and the dynamics affect only the edges between
them. An edge is characterized by a triplet (S,u,v) noting
two communicating nodes u, v, and a time interval S which
is not necessarily continuous (may even be a union of non-
contiguous time intervals). In this work, we adopt this stream
framework. In particular, as we will see, we represent the
activity as a clique stream, and S is always a finite union
of singletons as edges appear instantaneously.

III. MODEL DESCRIPTION AND METHODOLOGY

A. The model

Let a communication network have N inter-connected en-
tities, referred to as nodes. In terms of notation style, we
differentiate a random from an observed variable (respectively
vector) with uppercase and lowercase (respectively bold) let-
ters. Moreover, let | · | denote the size of the input set.

Definition 1. (Communication event): A communication event
e=(τe,Xe) is denoted by a tuple of N +1 elements, which
contains the timestamp τe at which the event occurred and its
fingerprint Xe.

Definition 2. (Event fingerprint): The fingerprint of an event
e is an N -dimensional binary vector Xe ∈{0,1}N , where
X

(j)
e =1 if node j is involved in the event, and 0 otherwise.

Note that the involvement of a node in an event implies its
participation regardless its communication role (e.g. sender or
receiver). From a probabilistic point of view, a fingerprint fol-
lows a multivariate Bernoulli distribution. From a graph point
of view, we can see that each event creates a clique with all the
involved nodes (see an example in Fig. 1). Formally, a clique is
defined as a subset of nodes of the graph that are all pairwise
adjacent. Therefore, we regard the communication activity as
a clique stream, and each clique appears instantaneously as
events have no duration.

Definition 3. (Event stream): An event stream S =
{(τs,Xs)}ns=1 is a sequence of n, |S| communication events
each creating a clique among the involved nodes. We write
as St⊂S the sub-stream with the events that occurred in a
certain time interval t, and nt, |St|.

Assumption 1. The communication events are considered to
be independent. The total number of events n recorded during
an event stream S is considered to be deterministic.

Let us consider a time interval t and the associated event
stream St consisting of its nt recorded events. Let the event
realizations be denoted by {xi}nt

i=1, where ∀i,xi ∈{0,1}N .
Also, let M (j)

t =
∑nt

i=1X
(j)
i be the number of events recorded

at node j ∈{1, ...,N} over the time interval t.
For a given node j and time interval t, the goal of our

method is to be able to decide if the volume of events in which
that node participates is abnormal. To solve this problem, the
main idea is to provide confidence levels for M (j)

t based on the
fingerprints collected from events of the neighboring nodes.
This way, an anomaly can be simply spotted whenever the
observed value of M (j)

t lies out of the confidence level.

Definition 4. (Conditional probability function): Let x(−j) be
the fingerprint of the event X that indicates the participation of
all nodes except from node j. Then, we define as η∗j (x

(−j)) the
probability that node j participates in the event X , provided
the fingerprint x(−j):



η∗j (x
(−j)),P(X(j) =1|X(−j) =x(−j)) (1)

=E
[
X(j)|X(−j) =x(−j)

]
. (2)

Knowing the fingerprint over all the other nodes allows us to
express the behavior of node j as a Bernoulli random variable:

X(j)∼B
(
η∗j (x

(−j)
i )

)
. (3)

Concerning a sub-stream St and the number of events
recorded at node j therein, we can note that M (j)

t is a sum
of Bernoulli distributions and, thus, we can use concentration
inequalities [23], such as Chernoff’s or Hoeffding’s [24],
to derive confidence levels. Below, we apply the bilateral
Hoeffding’s inequality to our case:

P

(∣∣∣M (j)
t −µ∗

∣∣∣≥ ε ∣∣∣∣∣ ∀i=1 . . .nt, X
(−j)
i =x

(−j)
i

)

≤ 2exp

(
−2ε2

nt

) (4)

with µ∗=E
[
M

(j)
t |X(−j) =x(−j)

]
=
∑nt

i=1 η
∗
j (x

(−j)
i ). Using

this inequality and, as mentioned earlier, knowing the event
fingerprints of all other nodes, we have with probability at
least 1−δ: ∣∣∣M (j)

t −µ∗
∣∣∣≤√nt log(2/δ)

2
. (5)

This equation provides, with high probability (as δ is close to
0), a good confidence interval for M (−j)

t .

B. Methodology

Suppose we observe the sub-stream St and the associated
nt fingerprints. Let x(j)i be the observed version of X

(j)
i

indicating if node j participated in the event i or not, and
m

(j)
t =

∑nt

i=1x
(j)
i be the observed version of M (j)

t . If we
suppose the access to η∗j (i.e. the true conditional probability
for node j), then an intuitive anomaly score for the m(j)

t is:

ρjt =2 exp

(
−2(m

(j)
t −µ∗)2

nt

)
. (6)

This score is obtained by replacing ε with (m
(j)
t −µ∗) in the

right-hand side of Eq. 4. Relating to the statistical hypothesis
testing theory, this score can be seen as an upper bound on
the p-value. Then, a threshold α can be set, conventionally 0<
α≤ 0.05, to detect anomalies. More specifically, an anomaly
is detected when ρjt <α. Note that this method is equivalent to
replacing δ with the chosen threshold value, and then checking
if (m

(j)
t − µ∗) falls out of the confidence interval in Eq. 5.

Bear also in mind that, since this method provides an upper
bound on the p-value, it is in fact more conservative than in
the standard statistical testing. Indeed, the confidence intervals
built with Eq. 5 are larger than the confidence intervals that
correspond to probability exactly equal to α.

In practice, we cannot have access to the true conditional
probability functions η∗j (·) which need to be estimated. To

this end, we suppose that we have access to a training data
stream S0 = {(τ0i ,X0

i )}
n0
i=1 which is an event stream recorded

at times of normal communication behavior for all nodes. With
our definition of η∗j (·) (Definition 4), the estimation problem
refers to the task of estimation of conditional probabilities.
However, since we deal with a Bernoulli random variable,
the problem actually becomes a regression of the unknown
function η∗j : {0,1}N−1 7→ [0,1], which can be performed using
the previous normal dataset S0.

In this work we do not discuss the regression procedure,
but we still need to note that non-parametric methods do seem
suitable. Indeed, the estimation of the conditional distributions
for every possible combination of fingerprints would lead to
the estimation of N(2N−1−1) parameters. Note also that the
Binary Tree or Random Forest regression algorithms seem
well-adapted to this setting since the explanatory variables are
binary. Let η̂j(·) := η̂j(·;X0

1 , . . . ,X
0
n0
) be our regressor. The

first anomaly detection method one can think of is the simple
‘plug-in’ method:

• fix δ;
• replace η∗j by η̂j in Eq. 5;
• use Eq. 5 to obtain confidence levels for M (j)

t .

Remark. In practice, fixing δ is not trivial and simply taking
a value below 0.05 could lead to bad results. One way to fix
δ is via cross-validation on the training stream. To do so, one
should fix an acceptable false positive rate (e.g. a standard
value is 0.05), then via cross-validation find the value of δ
that generates a false positive rate lower than that fixed value.

However, Eq. 4 is not true for the estimated version of η∗j
and we must provide a concentration inequality around the
estimated expectation µ̂=

∑nt

i=1 η̂j(x
(−j)
i ). In the following

subsection, we give an asymptotic concentration inequality
around our predicted number of shared events.

C. Model-free prediction intervals

Theorem 1. Let S0 be the training (normal) event stream for
which we assume that ∀i=1, . . . ,n0, X0

i ∼
i.i.d.

PX0 . Let St be
another stream for which the distribution PX may be different
but having the same support. Assume that both distributions
have the same conditional probability function (Definition 4).
Assume our estimator η̂j is weakly consistent [25], and ∀i=
1, . . . ,n0,

max
xi,x′i∈{0,1}N−1

|η̂j(x; x1, . . . ,xi, . . . ,xn0
)

− η̂j(x; x1, . . . ,x′i, . . . ,xn0
)| ≤κ(n0),

(7)

where, κ tends to 0 when n0 tends to infinity such that
n0κ

2(n0) −→
n0→∞

0. Then, we have :

lim
n0→∞

P

(∣∣∣∣∣M (j)
t −

nt∑
i=1

η̂j(X
(−j)
i ; X0

1 , . . . ,X
0
n0
)

∣∣∣∣∣>s
)

≤ min
k∈[0,s]

{
2exp

(
−2k2

nt

)
+2exp

(
− (s−k)2

2nt

)}
.

(8)



Proof. A sketch follows; the complete proof is provided in
the Appendix. The successive use of the triangle, the Cauchy-
Schwarz and the Jensen inequalities allows us to upper-bound∣∣∣M (j)

t −
nt∑
i=1

η̂j(X
(−j)
i ; X0

1 , . . . ,X
0
n0
)︸ ︷︷ ︸

=µ̂

∣∣∣ by:

∣∣∣M (j)
t −µ∗

∣∣∣︸ ︷︷ ︸
(i)

+
∣∣∣µ∗− µ̂−E[µ∗− µ̂]∣∣∣︸ ︷︷ ︸

(ii)

+ntE
[
(η∗(X)− η̂(X))2

]
︸ ︷︷ ︸

(iii)

.

Since (iii) tends to 0 as n0 tends to infinity, due to the
consistency assumption, we can bound the left-hand side of
inequality (8) by:

min
k∈[0,s]

{
P

(
(i)>k

)
+ lim
n0→∞

P

(
(ii)>s−k

)}
.

Applying Hoeffding’s inequality on the first element of the
sum, and McDiarmid’s inequality on the second one, leads to
the final result.

Remark. Replacing k by s
3 in the final inequality given by

Theorem 1, we obtain:

limsup
n0→∞

P

(∣∣∣∣∣M (j)
t −

nt∑
i=1

η̂j(X
(−j)
i ; X0

1 , . . . ,X
0
n0
)

∣∣∣∣∣>s
)

≤ 4exp

(
−2s2

9nt

)
.

(9)

Remarks on Theorem 1. First of all, as mentioned in the
first part of the theorem, the training and test event streams
may follow different probability distributions. This is very
interesting since, in practice, M (j)

t is a non-stationary time-
series: i.e. proportion of events in which a node is involved in
is not stationary over time. However, we assume that, while
in normal state, the probability that a node participates in an
event, knowing the participation of the other nodes, does not
change over time. From the network viewpoint, this means
that the underlying graph structure, on which the events are
dynamically created, does not change in that time as well.

Therefore, provided that all hypotheses are verified, we test
whether the η function has changed between the training and
the test event streams; we test the stationarity of the con-
ditional distributions. Falling out of the confidence intervals
(built with Eq. 8 or (9)) would indicate a significant change
in the conditional probability. Consequently, a property of this
method is that it enables the detection of changes in the activity
level of a node, having as reference the activity of the other
nodes in its close communication environment.

Besides real anomalies, one reason for our statistical test
to see the observed communication volume to fall out of the
confidence intervals is when the assumptions are not verified.

The consistency may has not been reached yet, which means
that the number of training samples is not large enough. The
other reason may be that the support of the distribution has
changed (e.g. nodes sharing events for the first time), which
is however important to be able to detect as well.

The consistency assumption is pretty typical for a regression
framework. The reader may refer to the large literature that
deals with this question [25, 26] in which it has been shown
that many regressors are consistent. As clarified earlier, this
work does not aim to provide a new regression method,
however, we must note that our method largely depends on
the convergence rate of the estimator.

The last assumption we need to analyze is the bounded
difference of Eq. 7. In simple words, it says that when the
size of the training set increases, a change of one sample does
not affect much the estimated regression function. The second
hypothesis, n0κ2(n0) −→

n0→∞
0, is less intuitive. Nonetheless,

for many estimators, κ(n0)=O( 1
n0

) and thus the hypothesis
holds. As an example, take the Nadaraya-Watson regressor
[25]. Let here K be the kernel function and h the bandwidth.
We then have κ(n0)=

1/n0

1
n0

∑n0
i=1Kh(X

(−j)
i −x)

=O( 1
n0

), since

1
n0

∑n0

i=1Kh(X
(−j)
i −x) converges to E[Kh(X

(−j)−x)].

IV. EXPERIMENTS

A. State-of-the-art competitors

For our comparative evaluation, we rely on the anomaly
detection literature for dynamic graph (see Sec. II). We choose
state-of-the-art methods from the literature which, to the
best of our knowledge, are the only existing works on the
probabilistic anomaly detection at node-level, and hence are
natural competitors to our work. They use the aggregated
representation of the dynamic graph (see Sec. II and Fig. 1).
We set the aggregation’s time-scale to one day, hence the edge
weight between two nodes at a time interval corresponds to the
number of events shared by those two nodes in that interval.
Heard’s method [3] consists in fitting, either sequentially
(based on all past values) or retrospectively (based on all
values but the one to predict), an homogeneous counting
process on each edge of the graph independently. However,
rather than focusing on edges, here we decided to model the
total number of messages received per day by each node.
We chose a retrospective fitting, as the number of studied
timestamps is not large enough for efficient sequential fitting.
The Scan Statistics-based method in [14], at each timestamp,
builds a statistic on the neighborhood around the node of inter-
est, and normalizes it using past values in a time-window. The
normalized statistic is used directly as an anomaly score. In
our experiments, we used a statistic of order 0, specifically, the
weighted degree of the node of interest. With our aggregated
graph construction, this corresponds to the sum of weights of
the adjacent edges.
Anomaly scores. We can build two anomaly scores. The first
one, referred to as bilateral, increases when the observed value
is ‘far’ from the expected one, in terms of absolute value. For
our method, that simply corresponds to the score described in



III-B, i.e. the Eq. 6 taken negatively so that it increases with
the deviation from what is expected.

The second anomaly score, referred to as unilateral, is
motivated by the fact that in telecommunication networks an
interesting type of anomalous behavior is when a node has an
abnormal low level of received messages. That may reflect an
antenna breakdown. For this reason, the anomaly score should
increase only when the observed value is lower than expected.
For our method, we simply take ρ=−exp(

−2(µ̂−m(j)
t )

9nt
).

B. IoT dataset
The first results are obtained from a real industrial setting

that concerns Sigfox, a telecommunication operator special-
ized on sensor and Internet-of-Things (IoT) networks1. Net-
works like these are dedicated to cover objects or devices
that need to exchange only little information with users
avoiding standard transmission protocols (such as WiFi, 4G
or Bluetooth) that may not be well-adapted to the operational
constraints (e.g. for low energy consumption). When a sensor
needs to transmit a message, it simply sends a signal which
can be received by several nearby Base Stations (BSs) that
are in reachable distance. Our objective is to detect abnormal
volume of received signals observed at any BS during a day.
Hence, we consider that each sent message corresponds to
a single event whose fingerprint spans only over the set of
receiving BSs of the network. The value of each dimension of
the event fingerprint indicates whether the message has been
received or not by the corresponding BS (1 or 0, respectively).

In this evaluation study we use the event stream recorded at
a subset of 38 BSs over a period of 5 months. Fig. 1 shows the
relative geographical locations of the BSs. Each BS is a node
in the considered graph representation and each event creates
instantaneously a clique in the graph (e.g. see the left column
of Fig. 1) among the involved nodes that all receive the same
message, sent from the same device).

The results of Fig. 2 concerns two BSs: one with a known
anomaly (lying between the two vertical red lines of Fig. 2a),
the other with no known issues (Fig. 2b). Note that we have the
opinion of Sigfox’s experts only about these two BSs, yet we
lack labels for the rest of the BSs. According to the experts,
network’s operation has been normal during January 2017,
thus, for both reference BSs the learning phase was performed
during that period. We used a Random Forest regressor [27]
as implemented in [28]. The testing phase was performed
independently on a daily basis for the subsequent 4 months.
In other words, and this concerns all our results, we report the
raw outcome of the independent daily detection for anomalies
without applying any post-processing that could certainly
improve the performance of most methods. Fig. 2 refers to
the testing phase and shows the evolution of the observed
number of received messages (blue) and the evolution of the
confidence levels (orange) with δ=0.01.

The results, especially the ROC curves, show that our
method (bilateral and unilateral variations) outperforms the

1The datasets and our implementation of all compared anomaly detection
methods are publicly available at http://kalogeratos.com/psite/nad2019.
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Fig. 1. High-resolution and aggregated representations (columns) of com-
munication activity in a part of the considered Sigfox IoT network, during
two consecutive days (rows). Each node corresponds to a Base Station (BS).
The red BS has been tagged as anomalous by experts and presents abnormal
behavior at some point during he observation time, while the green BS is
taken as reference of normal behavior. Left column: Each graph represents a
single event that occurred at the day indicated on the left. The involved nodes
form a clique in the network. Right column: Each graph is an aggregated
representation of all the events of the respective day. A link is drawn when
two nodes share more than 30% of the total number of messages they received
during that day.

compared approaches. As expected, the tests with unilateral
score were always better than those with bilateral, for all the
detection methods. Fig. 2b suggests that our model is well-
suited for the analysis of the BSs in normal network operation.
Indeed, the false positive rates are pretty low in that case.

To prove this latter idea, we applied our method on 5 other
BSs which are located close to each other. The predicted
confidence region around the predicted value are plotted for
each BS in Fig. 3. Once again, we can see that the observed
number of received messages falls out of the confidence
level very few times. The fact that our method reports long
anomalies for many BSs during May 11 - 25, may be a
sign that retraining is needed. However, for the third BS,
the observed value is persistently very low compared to the
predicted confidence intervals, which is a stronger indication
for anomalous behavior during that period of time.

C. Simulated dataset

Aiming to extend the scale of our experimental study, we
developed a data generator that simulates network communi-
cation activity. To be consistent with the previous experiment
of Sec. IV-B, we keep the nodes’ spatial arrangement of Sigfox
network. We propose the following simulation process:
S1) Sample the spatial network structure: Draw N node

(i.e. analogous to BSs) locations, according to a mixture
model M of K (bivariate) Gaussian distributions.

S2) Sample an event/fingerprint: First generate a transmission
location (analogous to a device) `∼M, as in Step 1.
Then for each node, let its location x, draw a Bernoulli
with a parameter inversely proportional to the distance



(a) Evolution of confidence levels for the anomalous BS.

(b) Evolution of confidence levels for the normal BS.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Bilateral (AUC = 0.84)
Unilateral (AUC = 0.95)
Heard (AUC = 0.59)
Heard Uni (AUC = 0.77)
Scan (AUC = 0.64)
Scan Uni (AUC = 0.78)

(c) ROC curves for bilateral and unilateral confidence levels. Comparison with
stationary counting processes.

Fig. 2. Results on two BSs of the considered IoT network. (a–b): The true
number of messages received by the abnormal BS and the normal one over the
testing period. The yellow area corresponds to the predicted confidence region
for the number of received messages. (c): The ROC curves and their AUC
of the proposed method using a bilateral (orange) and an unilateral (green)
anomaly score. Comparison with Heard’s [3] and Scan Statistics [13, 14].

d(x,`). In our experiments, we set the Bernoulli param-
eters to be equal to exp(− 1

σx
d(x,`)), where σx is a

location-dependent visibility parameter that controls the
density of the graph.

S3) Generate an event stream (clique stream): At each times-

Fig. 3. Evolution of the predicted confidence regions for five BSs.

tamp t, draw nt event fingerprints by applying Steps 2-3,
where nt may be constant, or random, over time.

S4) Simulate anomalies through non-stationarity: The sim-
plest way to simulate non-stationarity is to draw the
total number of events at each timestamp according to a
non-stationary process. To increase the complexity of the
phenomena, one may also let the component (or cluster)
proportion of the mixture inM to vary at each timestamp.
That would correspond to the case where devices appear
following a non-uniform spatial distribution. To simulate
anomalies for a node, it is sufficient to let vary the
visibility parameter σx associated to the node’s location.

In order to demonstrate the robustness of our method,
we apply the above generative process in three simulations
with different ‘complexity’, whereas sharing the following
properties:
• S1: N =100 communication nodes are drawn, for which,
T =1100 timestamps are then simulated. The number of
Gaussian distributions are fixed to K =10.

• S2: The same set of constant visibility parameters is used.
• S3: The first 500 timestamps are treated as the training

stream, while the rest correspond to the test stream.
• S4: A single arbitrary node is chosen to be anoma-

lous. For which, 4 anomaly time intervals are simulated:
[750, 800], [850, 900], [950, 1000] and [1050, 1100]. Each
of these intervals imitates an anomalous behavior at a
different scale; this is achieved by decreasing only the
visibility parameter σx associated with the anomalous
node.

Our three experiments (Exp. 1-3) differ in their complexity
regarding the stationarity of the respective time-series, i.e.
number of events in which the anomalous node (the node that



(a) Activity of the anomalous node during Exp. 1. (b) Activity of the anomalous node during Exp. 2. (c) Activity of the anomalous node during Exp. 3.
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Fig. 4. Results on simulated communication streams. The columns report results related to the three generated streams in order, Exp. 1, 2, 3, respectively.
(a-c) The time-series of the number of messages (i.e. communication events) received by the anomalous node during the testing period of each experiment.
Four anomaly intervals are simulated for the same fixed node that is chosen to act as anomalous, in the time intervals [750, 800], [850, 900], [950, 1000], and
[1050, 1100]. The beginning and the end timestamps of each anomalous interval are indicated with red and orange vertical lines, respectively, in the plots.
(d-f) the ROC curves of the node-level outlier detection task for the three synthetic streams.

at some point develops an anomalous behavior) participates in
each experiment. The top row of Fig. 4 presents the time-series
of the test streams. The timestamps of the beginning and the
end of each simulated anomalous behavior are also indicated
in the plots with orange and red vertical lines, respectively.

In Exp. 1 (Fig. 4a, d), the process is perfectly stationary:
at each timestamp, exactly 100 events are generated with
the same process. In Exp. 2 (Fig. 4b, e), the total number of
events participated at each timestamp remains 100, with the
difference that a Dirichlet random variable of order K is
drawn, with parameters all equal to 1. This corresponds to
the mixing variable (i.e. proportion) for the components ofM.
The last one, Exp. 3 (Fig. 4c, f), is meant to be more difficult: it
uses the Dirichlet mixing as well, however, at each timestamp
of anomaly, the total number of generated events is increased.
This is a ‘tricky’ setting for the bare human eye as the time-
series of interest ‘looks’ stationary (Fig. 4c) although there are
actual changepoints in the node behavior.

For all three experiments, the threshold value that needs
to be fixed for building the confidence levels was estimated
using cross-validation (see details in Sec. III-B). We fix the
acceptable false positive rate at 0.05. The light gray vertical
lines in the background of the top row plots in Fig. 4 indicate
the timestamps at which the observed values fall out of the
confidence levels, and as such they can be spotted as outliers.

The bottom row of Fig. 4 shows the ROC curves of the node-
level outlier detection task for the three synthetic streams.
The competitors are the same as those of the experiment on
real data (Fig. 2), but here only bilateral scores are plotted.
In addition, here we employ a second version of both Heard’s
and Scan Statistics methods. The Heard Edges fits an homoge-
neous Poisson process on each edge independently; each edge
denoting the number of common messages received by two
nodes. In this case, the node anomaly score is the sum of p-
values of its edges. Moreover, the Scan Batch method simply
outputs anomaly scores equal to the normalized deviation of
the statistic of interest (see Sec. IV-A) from a (unordered)
batch of the training stream, hence without sequential analysis.

All the reported results indicate that the proposed method
outperforms clearly its competitors. As expected by its design,
our approach is shown to be robust to the non-stationarity
introduced at arbitrary timestamps during our simulations. The
performance of all other methods seems to decrease fast with
the increase of non-stationarity (i.e. behavior complexity). An
important closing remark is to remind that, in our evaluation,
we have been applying anomaly detection independently on
each day. As this work is related to the detection of change-
points in nodes’ behavior rather than instantaneous anomalies,
post-processing (such as filtering) of the raw detection out-
come could increase the accuracy of most methods.



V. CONCLUSIONS

In this paper we presented a probabilistic framework for
node-level anomaly detection in communication networks. We
went beyond the aggregated representations that the existing
literature has used to model the communication activity. In-
stead, we modeled such activity as a clique stream where each
event creates an instantaneous clique among the communicat-
ing nodes of the graph. The detection approach we proposed is
to infer the conditional probabilities of cliques to be generated.
This allowed the derivation of node anomaly scores which
are efficient in detecting when the communication volume
deviates from the ‘normal’ behavior (estimated using a training
stream of normal communication behavior), while also being
statistically interpretable. We applied our method on both real-
world and synthetic sensor network data, and demonstrated
that it outperforms other probabilistic approaches found in the
related literature.

As future work, there is room to further improve the accu-
racy of the statistical modeling, consider that events can create
more complex structures of connected nodes than cliques,
include dynamics coming from (dis)appearance of nodes,
and finally bring our method closer to the link prediction
or structure inference tasks, using for instance the learned
conditional probabilities.
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APPENDIX

Theorem 1. See Sec. III-C.

Proof. In the following, we note η̂n0
(·) := η̂j( · ; X0

1 , . . . ,X
0
n0
).

We also assume the distribution described in Theorem 1: ∀i=
1, . . . ,n0, Xi ∼

i.i.d.
PX0 and ∀j=1, . . . ,nt, Xj ∼

i.i.d.
PX . With

an abuse of notation, PX0 and PX also refer to the marginal
distributions. Using the triangle inequality, we get:∣∣∣∣∣M (j)

t −
nt∑
i=1

η̂n0(X
(−j)
i )

∣∣∣∣∣
≤

∣∣∣∣∣M (j)
t −

nt∑
i=1

η∗(X
(−j)
i )

∣∣∣∣∣+
∣∣∣∣∣
nt∑
i=1

(η∗(X
(−j)
i )− η̂n0

(X
(−j)
i ))

∣∣∣∣∣
≤

∣∣∣∣∣M (j)
t −

nt∑
i=1

η∗(X
(−j)
i )

∣∣∣∣∣
+

∣∣∣∣∣
nt∑
i=1

(η∗(X
(−j)
i )− η̂n0(X

(−j)
i ))−

EX0⊗X

[
nt∑
i=1

(η∗(X
(−j)
i )− η̂n0

(X
(−j)
i ))

]∣∣∣∣∣
+

∣∣∣∣∣EX0⊗X

[
nt∑
i=1

(η∗(X
(−j)
i )− η̂n0

(X
(−j)
i ))

]∣∣∣∣∣︸ ︷︷ ︸
(∗)

.

In the above, EX0⊗X means that the expectation is taken
with distribution P0

X for S0 and PX for St. Using Jensen’s
inequality and the fact that all X(−j)

i are i.i.d., we get:

(∗)≤EX0⊗X

[∣∣∣∣∣
nt∑
i=1

η∗(X
(−j)
i )− η̂n0(X

(−j)
i )

∣∣∣∣∣
]

≤ntEX0⊗X [|η∗(X)− η̂n0
(X)|]

≤ntEX0

[∫
|η∗(x)− η̂n0

(x)|PX(dx)
]
.

Using Cauchy-Schwarz inequality:

≤ntEX0

[√∫
(η∗(x)− η̂n0(x))

2
PX0(dx)×

×

√∫
PX(x)

PX0(x)
PX0(dx)

]
.

With the same support hypothesis:

=ntEX0

[√∫
(η∗(x)− η̂n0

(x))
2
PX0(dx)

]
.

Using Jensen inequality:

≤
√
EX0⊗X0 [(η∗(X)− η̂n0

(X))2] := r(n0).

Due to the assumption of weak consistency, r(n0) converges
to zero, so as (∗). In the following, we assume that r(n0)<s

which is always true after a certain rank. We note s̃(n0)=
s− r(n0). Back to the first inequality of the proof, we get
∀k∈ (0, s̃(n0)):

P(|M (j)
t −

nt∑
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η̂n0
(X

(−j)
i )|>s)

≤P(|M (j)
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]∣∣∣∣∣> s̃(n0)−k
)
.

This is due to the fact that k+ s̃(n0)−k+r(n0)= s. We now
need to find an upper bound on the two elements of the right-
hand side of the previous inequality. The first element of the
sum is easily bounded using Jensen’s inequality:

P

(
|M (j)

t −
nt∑
i=1

η∗(X
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)
≤ 2 exp

(
−2k2

nt

)
.

For the second element, we must note that
∑nt

i=1(η
∗(X

(−j)
i )−

η̂n0
(X

(−j)
i )) is a function, with bounded differences, of

n0 + nt independent random variables. Thus, we can apply
McDiarmid’s inequality to bound our probability:
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This implies that:
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This is true ∀k∈ (0, s̃(n0)). Furthermore, since s̃(n0) −→
n0→∞

s

and n0κ2(n0) −→
n0→∞

0, passing to the limit on both side of the
previous equation, we get our final result:
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