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ABSTRACT
This chapter studies information cascades on social networks with a special focus on types

of diffusion processes such as rumors and false news. The complex temporal dynamics of in-
formation cascades and rapid changes in user interests require flexible mathematical modeling
to properly describe the diffusion dynamics. After mentioning the modeling advancements of
recent decades, we get to modern models, such as the Information Cascade Model (ICM), that
are indeed capable of describing such time-dependent user interests and are thus particularly
suited to the analysis of information diffusion. We provide a theoretical analysis of ICM, re-
lating the dynamics of the cascade to structural characteristics of the social network, and then
use that analysis to design control policies capable of efficiently reducing the undesired diffu-
sion. The presented framework for activity shaping is generic while enjoying a simple convex
relaxation. Finally, we present an algorithm for the control of Continuous-Time Independent
Cascades which is evaluated and compared against baseline and state-of-the art approaches
through diffusion simulations on real and synthetic social networks.

Keywords: Information diffusion networks, rumors, information cascades, propagation,
diffusion control, social interaction
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2 CHAPTER 4 Information diffusion and rumor spreading

4.1 INTRODUCTION
Modern societies understand the world, manifest different viewpoints, and test their
objectiveness, by exchanging information through direct communication or, in more
recent years, through online social networks. On a larger scale, this process may also
create consensus and mitigate social friction through public debate, two essential as-
pects of a healthy democracy. Information diffusion is often represented by pieces of
information (e.g. news, scientific or historical facts) that spread through a network.
As for the network, that consist of interacting entities, such as individuals, institu-
tions (e.g. governments, authorities, or other organizations), and private entities (e.g.
media, marketing agencies).

The Internet era has offered new means to produce and share information through
large-scale online social networks. The disposition of large amount of data coming
from diffusion traces has helped scientific research to improve our understanding of
diffusion processes arising in various disciplines, including sociology, epidemiology,
marketing, and computer systems’ security. However, the democratization of content
creation and sharing has not been adequately coupled with effective (self-, collective,
or automatic) moderation, correction and filtering mechanisms. Consequently, the
explosive volume of the available content brings forward huge challenges regarding
the human capacity to process that fast-paced and gigantic information stream, as
well as regarding the technical aspects of data management.

Our daily information diet tends to promote the variety in the content we consume
to the expense of its precision and detail. During moments of crisis, the scarcity of
trustworthy information and lack of time to analyze it leads to the proliferation of
false rumors. There are also various psychological factors that impact the way we
participate in this exchange. For instance, people get influenced by others, but also
tend to search and recall information and facts that align with their already formed
belief system (confirmation bias).

Furthermore, users interact preferably with people of similar profiles and opin-
ions (homophily), a tendency that greatly reduces the heterogeneity of the user’s
perceived public debate. In addition, members of any online group receive social
pressure to conform to group’s beliefs; that tends to radicalize opinions and allow
questionable ideas to gain momentum (echo chambers). Then, the relative isolation
of small online communities may lead them to believe in false rumors, even create
a false consensus against what is considered as verifiable by the majority of society.
The situation may get considerably aggravated in periods of political tension where
polarization and partisanship grows in well-segregated groups that reduce signifi-
cantly their exposure to counterarguments.
Rumor spreading and control. There are many types of misinformation: bad or ‘yel-
low’ journalism, fake news, rumors and unverified information, hoaxes, and others
(for a discussion on the taxonomy see [1]). Despite the fact that many studies hardly
distinguish these types, there are still notable differences with regards to the actors
propagating unverified or untruth information (e.g. individuals, media, politicians or
authorities), their motives (e.g. ignorance, desire to be part of a movement, gaining
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4.1 Introduction 3

visibility and revenues, or as part of a speculative communication campaign), and
the way people interact with a new piece of information in each of those cases, es-
pecially during its verification process. As it has been pointed out, terms like “fake
news” are just new names for very old problems. The particular recent concern of
public opinion on fake news is however due to the fact that the cascading effects of
misinformation gain magnitude and speed in online social networks, and thus their
short-term negative impact is boosted. These effects have been recorded in numer-
ous major events, such as terrorist attacks, social demonstrations, elections, natural
disasters, and war conflicts.

In this chapter we mainly refer to untruth rumors1 that represent false information
and may have malicious motives. Such rumors are usually proven false shortly after
their appearance. However, the debunking may not propagate fast enough in the
social network to prevent a rumor from pursuing its diffusion (this is also the case,
for example, of long-lasting rumors such as conspiracy theories) and that is exactly
the point where computational tools can be beneficial.

There have been many developments in recent decades concerning both infor-
mation dissemination and viral epidemics on networks. Despite the particular prop-
erties of rumor spreading, it is still a type of information diffusion for which many
generic models and results are therefore relevant. Early models originated from the
Susceptible-Infected-Removed (SIR) epidemic model [2, 3] and a detailed related
work is provided in the next section. Worth to mention though the modern family
of Information Cascade Models (ICM) [4] which considers heterogeneous node-to-
node transmission probabilities. ICM fits well to problems related to information
diffusion on social networks and, among others, finds straightforward applications
in digital marketing [5]. Indeed, ICMs were used to fit real information cascade
data and observed node ‘infection’ times in the MemeTracker dataset [6]. In an-
other work, the aim was to infer the edges of a diffusion network and estimate the
transmission rates of each edge that best fits the observed data [7].

Theoretical studies have given valuable insights on diffusion processes by defin-
ing quantities tightly related with the systemic behavior (e.g. epidemic threshold, ex-
tinction time) and describing how a diffusion unfolds from an initial set of contagious
nodes. Most notably, a number of studies highlighted the crucial role that the net-
work structure plays in how the diffusion process unfolds, which is also the subject
on which this chapter is largely devoted. The relation between the network struc-
ture and the behavior of SIR epidemics has been shown in [8]. Follow-up works did
verified this relation and broadened the discussion to other types of diffusion models
[9, 10]. Similar theoretical results have then been given for ICM as well [11, 12].

The quantification of systemic properties can help on the direction of risk assess-
ment (e.g. economic, health, social risks) and, furthermore, enable diffusion process

1 According to Oxford English Dictionary, a rumor is “a currently circulating story or report of uncer-
tain or doubtful truth”. Thus, a rumor is by definition uncertain and may eventually be true or false.
However, what will always be problematic is the fact that rumors gain disproportional circulation
speeds to their level of certainty.
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4 CHAPTER 4 Information diffusion and rumor spreading

engineering whose aim could be either to suppress or enhance a spreading. Under
ICM, this engineering task is also called in literature as influence optimization or ac-
tivity shaping, whereas the maximization has received a lot of attention for its direct
marketing applications. In recent years, the suppression of information diffusion pro-
cesses has also become a hot topic since it is related to various security hazards, e.g.
due to cascades of misinformation like harmful rumors and fake news. Suppressive
scenarios of the latter type are also possible in the ICM modeling context; the opti-
mization problem would be the minimization of the spread of a piece of information
in the network, e.g. by decreasing the probability for certain users to share the false
content to their contacts. To the best of our knowledge there is no prior work on this
direction and part of the contribution of this chapter is exactly on covering this gap
by developing computational approaches that are able to reduce an undesired spread
under the ICM.
Contribution and summary. The rest of the chapter keeps its focus on informa-
tion diffusion and is structured as follows. We commence with the detailed related
work (Sec. 4.2), the technical background regarding diffusion models (Sec. 4.3), and
their dynamics as stochastic processes (Sec. 4.4). The reader may find helpful the
Tab. 4.1 which lists the main notations we use in this chapter. Then, we discuss one
of the interesting tasks arising in diffusion networks: the offline influence optimiza-
tion through local intervention actions that affect the information spread (Sec. 4.5).
The purpose can be either to minimize or maximize the influence by means of sup-
pressive or enhancive actions, respectively. An efficient strategy should decide where
on the network to perform a number of available actions (limited by a budget of re-
sources) in order to better serve one of those two opposing aims.

To this end we extend the discussion with the novel approach first appeared in
[13] which frames this task as a generalized optimization problem under the ICM
and enjoys a convex continuous relaxation. In particular, we present a class of algo-
rithms based on the optimization of the spectral radius of the Hazard matrix using
a projected subgradient method (Sec. 4.6). For these algorithms, which can address
both the maximization and the minimization problem, we provide theoretical analy-
sis. The suppressive case is however more interesting in the context of this chapter
as it is straightforwardly related to the control of undesired diffusion processes such
as the spread of rumors. Hence, we investigate two standard case-studies of the
minimization problem (Sec. 4.7): the quarantine (e.g. see [10, 14]) and the node
immunization problem (see [15]).

Notably, among the major strengths of this framework is the fact that it can de-
scribe complex strategies that are able to use several immunization options by de-
ploying simultaneously resources of different types (partial or total immunization
of edges and nodes, etc). We also discuss how such strategies could find practi-
cal application to rumor control scenarios. In a section with experimental results
(Sec. 4.8), the main presented control algorithm, called NetShape, is compared to
standard baselines and state-of-the-art competitors in synthetic and benchmark net-
work datasets. In the last section (Sec. 4.9), we give our conclusions and directions
of future research.
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4.2 RELATED WORK
Modeling information and rumor spreading. Phenomena like rumors are part of
an old story which is adapted to the current technological context. Scientists started
studying rumors and stories related to the two World Wars. Knap [2], and soon later
Allport and Postman [3, 16], were among the first to analyze rumors and pose the
question of their control. In the work of the latter two, it was pointed out that, loosely
speaking, the spread of rumors is somewhat proportional to the general interest of the
story and the ambiguity of the related evidence. The similarities between rumor and
disease spreading were also noted in later literature, though Daley and Kendal were
the first to connect epidemics and rumors in mathematical terms [17, 18]. However,
they noted that their dynamics may be strikingly different due to the particularly
complex rumor spreading mechanism. Specifically, they introduced a variant of the
Susceptible-Infected-Removed (SIR) epidemic model, where stochastic recoveries
are triggered either when a) an infected node interacts with an already recovered one,
or b) two infected nodes interact and both may then recover. A slight modification
was proposed in [19] concerning case (b) where only the infected node that initiates
the interaction may recover.

These alterations to the basic epidemic model try to incorporate mechanisms
where a person is probable to lose its motivation in continuing to spread a rumor
when he realizes that it is no more novel and interesting, or has already been de-
bunked. Interesting to note, though, there is no assumed self-recovery process and
the recovery is rather brought about by crowdsourcing. This is in accordance to
follow-up and recent data-driven studies on rumor spreading on twitter which from
one side observed self-correction to be very weak and slow to take effect, while from
the other side they observed almost 1:1 ratio of users promoting important false ru-
mors and users trying to debunk them [20, 21].

In the course of the years more refined SIR-like epidemic models were proposed
for information diffusion, including rumors, that still have a permanent recovered
state (for a survey on compartmental models see [22, 23]). One example is the SEIR
model that introduces the (E)xposed state in which the individual is infected but in-
cubating before getting to (I) and become infectious to others. Another example is
SEI[R]Z [24, 25] that introduces competition among adopters at state (I) and those
at state (Z) who after infection have become skeptics. Both adopters and skeptics
recruit from the susceptible population; nodes can ‘exit’ the system and change the
population size over time. However, the state (S) also recruits from a general pop-
ulation which is out of the system, and one could assume that previously departed
individuals may later become susceptible again.

Evidently, the most popular epidemic modeling choice for information cascades,
including rumors, are the monotonically increasing stochastic models like SIR, that
allow node transitions only towards more critical states and eventually lead to per-
manent recovery or removal (i.e. as if the node dies out). Indeed, such modeling
fits to what is observed in high-frequency information circulation with short life,
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6 CHAPTER 4 Information diffusion and rumor spreading

a setting that covers the majority of the content reaching users: from social net-
works, news broadcasts, entertainment industry, and advertising. Nevertheless, for
an information spread that spans in longer time periods and may come and go to
the current affairs (e.g. political issues, ideas, competing products, long-lasting ru-
mors), models that allow reinfection, are definitely more relevant. In this sense, the
Susceptible-Infected-Susceptible (SIS), or the more information-oriented SEI[R]Z
[24, 25], could be fit better and enable also dynamic approaches for suppressing a
diffusion, e.g. the priority-planning [26] or the greedy approach of [27].

More recently, Information Cascade Models (ICM) were introduced that have
higher detail and can take advantage of the wealth of available social interactions
data to fine-tune their parameters. First, Independent Cascades have emerged as a
relevant model for viral diffusion of ideas and opinions [28, 29, 7, 30]. Similarly to
SIR, Independent Cascades are also increasing stochastic processes. However, con-
trary to epidemic models, they capture the precise temporal dependencies between
infection events of neighboring nodes, but require larger training datasets to infer
them properly. Second, multivariate Hawkes processes are self-exciting point pro-
cesses that are considered as the gold standard to deal with sequences of correlated
events in many scientific fields, e.g. for earthquake prediction [31], in biological
[32], financial [33, 34] and social interactions studies [35]. They were thus natu-
rally adapted to information diffusion in social networks with the main advantage
of allowing multiple events on a single node (e.g. posts, likes or shares in the case
of a social network) [36, 37]. Finally, Linear Threshold models were developed to
account for more complex diffusion dynamics in which users may require more than
one concordant piece of information to accept it [28].
Influence optimization. The first attempts to put forward computational approaches
for assessing the influence of users in social networks were those in [38, 39]. The
influence maximization problem under the ICM was first formulated in [5]. It was
proved that it is an NP-hard problem and remains NP-hard to approximate it within
a factor 1− 1/e. It was also proven that the influence is a submodular function of
the set of initially contagious nodes (referred to as influencers) and the authors pro-
posed a greedy Monte Carlo-based algorithm as an approximation. A number of
subsequent studies were focused on improving that technique [40, 41]. Notably, to-
day’s state-of-the-art techniques on influence control under the ICM are still based on
Monte Carlo simulations and a greedy mechanism to select the actions sequentially.

Besides the popularity of influence maximization, various questions regarding
how one could apply suppressive interventions have also become a hot topic in recent
years. However, to the best of our knowledge, there is no existing work under the
ICM and, as mentioned in the introduction, the methodological contribution of this
chapter is on the development of computational approaches under the ICM that are
able to efficiently reduce an undesired spread (see Sec. 4.5).
Network structure, information spread, and control approaches. Recent theoretical
studies have highlighted how crucial the structure of the underlying network is for
the behavior of a diffusion process. Specifically, they have studied the way structural
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4.3 Models of information cascades 7

characteristics of the network do appear in quantities that are tightly related with the
process behavior, such as the epidemic threshold and the extinction time.

An early work that drew a line between epidemic spreading and the structural
properties of the underlying network is that in [8]. Under a mean field approximation
of an SIR epidemic model on a graph, they found that the epidemic threshold is
proportional to the spectral radius of the adjacency matrix. Follow-up works verified
this relation and broadened the discussion to more types of diffusion and related
models. In [9] the S∗I2V∗ model was presented as a generalization of numerous
virus propagation models of the literature. It was also made possible to generalize
the result of [8] to that generic virus models. Based on these works, several research
studies have been presented on the epidemic control on networks, mainly focusing on
developing immunization strategies (elimination of nodes) and quarantine strategies
(elimination of edges). The eigenvalue perturbation theory was among the main
analytical tools used, see for example [15, 14, 10].

Similar theoretical results to those discussed above have been given for ICM as
well. Under discrete- or continuous-time ICM, it has been shown that the epidemic
threshold depends on the spectral radius of a matrix built upon the edge transmission
probabilities, termed as Hazard matrix [11, 12].
Related applications. Dealing with information diffusion and rumors gives rise to
a series of computational and inference problems, namely among others: credibility
assessment of posts and users [42]; sentimental analysis on how individuals receive
a piece of information; stance/role identification of users towards it; detection of ru-
mors and their spreaders in content streams [43, 44, 45]; identification of influential
users that could maximize the reach of a campaign, by examining structural prop-
erties of the network alone or in combination to historical data (interaction traces)
[5, 46, 47]; finally, the development of countermeasures to suppress a rumor or in-
formation cascade [48, 13] which is discussed in the technical part of the chapter.

4.3 MODELS OF INFORMATION CASCADES
Information cascades describe the dynamics of communication between individuals
of a social network by capturing the way messages are shared and propagate among
users. In all generality, an information cascade on a graph G = (V,E) is a multi-
variate stochastic process {Xi(t) : i ∈ V, t ≥ 0} where Xi(t) ∈ S denotes the state of
user i at time t, and S is a state space that may be finite, countable or uncountable.
Depending on the specific model, the state of a user may refer to a binary quantity
(e.g. S = {Unaware, Informed}), to the number of messages received during [0, t] (in
which case S = N), or something more detailed regarding the message spread (e.g.
S = Rd a low-dimensional representation of the content of the message). In all the
models, we consider that users that did not participate at all in the cascade are in a
default state 0 ∈ S. As a rumor propagates through the network, the number of indi-
viduals participating in the cascade, called influence, will grow and eventually reach
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8 CHAPTER 4 Information diffusion and rumor spreading

Symbol Description
1{<condition>} indicator function
1 vector with all values equal to one
‖X‖` `-norm for a given vector X: e.g. ‖X‖1 =

∑
i j Xi j, or generally ‖X‖` = (

∑
i j X`

i j)
1/`

M �M′ the Hadamard product between matrices (i.e. coordinate-wise multiplication)
µπ(1) ≥ µπ(2)... ordered values of vector µ using the order-to-index bijective mapping π
G,V, n,E, E network G = {V,E} of n = |V| nodes and E = |E| edges
(i, j) edge (i, j) ∈ E of the graph between nodes i and j
A network’s adjacency matrix A ∈ {0, 1}n×n

S state space. Example states: (S)usceptible, (I)nfeted, (R)ecovered
S0, n0 subset S0 ⊂ V of n0 = |S0 | influencer nodes from which the IC initiates
F n × n Hazard matrix [Fi j]i j of non-negative integrable Hazard functions over time
F set of feasible Hazard matrices F ⊂ R+ → R

n×n
+ , where F is one of its elements

∆ matrix of the integrated difference of two Hazard matrices: ∆ =
∫ +∞

0 (F̂ (t)−F (t))dt
τi time τi ∈ R+ ∪ {+∞} at which the information reached node i during the process
σ(S0) influence: the final number of contagious nodes when diffusion starts from the set S0

ρ
H

(F ) the largest eigenvalue of the symmetrized and integrated Hazard matrix F
p̂(s) Laplace transform of the function p(t)
X control actions matrix X ∈ [0, 1]n×n with the amount of action taken on each edge
x control actions vector x ∈ [0, 1]n with the amount of action taken on each node
k budget of control actions k ∈ (0, E) for actions on edges, or k ∈ (0, n) for nodes

Table 4.1 Index of main notations.

a saturation point. We use this quantity as our main quality metric:

Definition 1. Influence σ(S0, t) – Let S0 = {i ∈ V : Xi(0) , 0} ⊂ V be the set of
influencers, i.e. users that are initially contagious. The influence of the set S0 at time
t is defined as the total number of messages received by users of the social network
before time t:

σ(S0, t) = E

∑
i∈V

1{Xi(t) , 0}

. (4.1)

In the following, we denote as n = |V| the size of the social network, E = |E| the
number of connections, n0 = |S0| the number of initial influencers and the adjacency
matrix of G as A ∈ {0, 1}n×n s.t. Ai j = 1⇔ (i, j) ∈ E. Moreover, we denote as long-
term influence the total number of received messages after the diffusion σ(S0) =

limt→+∞ σ(S0, t).

4.3.1 EARLY MODELS: VIRUSES SPREADING THROUGH
SOCIAL NETWORKS

Epidemics are usually modeled using Markov processes [49], i.e. memoryless
stochastic processes entirely defined by their transition matrix. This transition
matrix defines the probability for each node to change state during an infinitesimal
time window [t, t + dt] (the simultaneous change of more than one node’s state is
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4.3 Models of information cascades 9

considered improbable). In the following, we thus use the notation:

Xi(t) : Y→ Z at rate Ci(t) (4.2)

to denote the stochastic transition rate Ci(t) ≥ 0 of node i ∈ {1, ..., n} at time t ≥ 0
from state Y to state Z, with Y, Z ∈ S.

Due to similarities between spreading phenomena, virus models have been also
used to describe information cascades on social networks. We here focus on two
standard such models: the SI and SIR models and we refer the reader to the recent
review in [50] for more information on the vast epidemiology literature.

4.3.1.1 Susceptible-Infected model

The Susceptible-Infected (SI) model is the simplest epidemic model, in which nodes
can be either (S)usceptible or (I)nfected. An infected node transmits the disease to
one of its susceptible neighbor at a rate β, and once infected a node remains infected
and thus contagious.

Model 1. SI model – Let G be a (possibly weighted) graph of n nodes and adja-
cency matrix A. The Susceptible-Infected model is a continuous-time Markov pro-
cess X(t) ∈ {S, I}n with the following transition rate:

Xi(t) : S→ I at rate β
∑

j

A jiX j(t), (4.3)

where β is the transmission rate of the epidemic.

Since the nodes remain infected, a connected network will be totally infected at
the end of the diffusion, and hence any set S0 has influence σ(S0) = n.

4.3.1.2 Susceptible-Infected-Removed model

The Susceptible-Infected-Removed (SIR) model [51] is a widely used epidemic
model designed for scenarios in which patients present immunity to the disease after
their infection and recovery. A recovered person will not transmit the disease further,
nor will it be subject to reinfections. An additional state is thus added to the SI model
and each node of the network is either (S)usceptible, (I)infected, or (R)emoved. At
t = 0, a subset S0 of n0 nodes is infected. Then, each infected node will transmit the
disease to its neighbors at rate β, and recover at rate δ.

Model 2. SIR model – LetG be a (possibly weighted) graph of n nodes and adjacency
matrix A. The Susceptible-Infected-Removed model is a continuous-time Markov
process X(t) ∈ {S, I,R}n with the following transition rates:

Xi(t) : S→ I at rate β
∑

j A jiX j(t)
Xi(t) : I→ R at rate δ, (4.4)

where β is the transmission rate of the epidemic and δ is the recovery rate of nodes.

Usually, the graph is undirected and all edges have the same rate. More complex
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10 CHAPTER 4 Information diffusion and rumor spreading

scenarios can be modeled using the inhomogeneous SIR model, in which each edge
has its own transmission rate βi j and each node its own recovery rate δi.

An alternative definition for this model is possible using infection times. One
may see that each node gets infected at most once and recovers at most once as well.
We can thus define, for each node i, the time τI

i at which it gets infected and the time
τR

i at which it recovers, with τI
i , τ

R
i ∈ R+ ∪ {+∞}. Then, τI

i = 0 would indicate that
user i is an influencer, while τI

i = +∞ would indicate that node i never got infected
throughout the whole epidemic.

Proposition 1. For an SIR epidemic, the infection times τI
i of not initially infected

nodes verify the following equality:

∀i < S0, τ
I
i = min

{ j∈{1,...,n} : T ji<D j}
(τI

j + T ji), (4.5)

where T ji and D j are independent exponential random variables of expected value
1/β and 1/δ, respectively, and τI

i = +∞ if the set { j ∈ {1, ..., n} : T ji < D j} is empty.
Furthermore, the recovery time of each node i is:

τR
i = τI

i + Di. (4.6)

Proof. This result relies on the fact that a node is infected as soon as at least one of
its infected neighbors transmits the infection to him. Since these events are inde-
pendent, the times Ti j required for infection along the edges of the network are also
independent. For more precisions, see e.g. [11]. �

4.3.2 INDEPENDENT CASCADES
Independent Cascades were initially introduced as discrete-time diffusion processes
[28], and later refined to more flexible continuous-time processes [? ].

Model 3. Discrete-Time Independent Cascades DTIC(P) – At time t = 0, only a
set S0 of influencers is infected. Given a matrix P = (pi j)i j ∈ [0, 1]n×n, each node i
that receives the contagion at time t may transmit it at time t + 1 along its outgoing
edge (i, j) ∈ E with probability pi j. Node i cannot infect its neighbors in subsequent
rounds t′ > t + 1. The process terminates when no more infections are possible.

The continuous version of Independent Cascades requires the definition of Haz-
ard functions to describe the varying transmission rates along each edge of the net-
work.

Definition 2. Hazard function Fi j(t) – For every edge (i, j) ∈ E of the graph, Fi j

is a non-negative integrable function that describes the time-dependent stochastic
transmission rate from node i to node j, after i’s infection.

Model 4. Continuous-Time Independent Cascades CTIC(F ) – The CTIC(F )
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4.3 Models of information cascades 11

model is a stochastic diffusion process defined as follows: at time s = 0, only the
influencer nodes in S0 are infected. Then, each node i that receives the contagion at
time τi may transmit it at time s ≥ τi along an outgoing edge (i, j) ∈ Ewith stochastic
rate of occurrence Fi j(s − τi).

The rest of this chapter will mainly focus on the analysis and control of such
information cascades. For notational purposes, we denote as F = [Fi j]i j the n × n
Hazard matrix containing as elements the individual Hazard functions and, respec-
tively, as F (t) = [Fi j(t)]i j the evaluation of all functions at a relative time-point t after
each infection time τi. Essentially, network edges imply non-zero Hazard functions:

(i, j) ∈ E ⇔ ∃t ≥ 0 s.t. Fi j(t) , 0. (4.7)

Note that each Hazard function Fi j is always evaluated at a relative time-point ini-
tialized at the infection time τi of the source node i.

Similarly to SIR, Independent Cascades are monotonically increasing stochastic
processes, and each node can only be infected once. We can thus define, for each
node i, the time τi of its first infection, which may be infinite if the node does never
get infected during the contagion. Unlike SIR, no epidemic states are explicitly
mentioned in the notations of CTIC (the reader may compare Eq. 4.5 and Eq. 4.8).

Proposition 2. For a Continuous-Time Independent Cascade CTIC(F ,T ), the in-
fection times τi of non-influencer nodes verify the following equality:

∀i < S0, τi = min
j∈{1,...,n}

(τ j + T ji), (4.8)

where Ti j ∈ R+ ∪ {+∞} are independent random variables of sub-probability density

pi j(t) = Fi j(t) exp
(
−

∫ t

0
Fi j(s)ds

)
. (4.9)

Proof. This result is similar to Proposition 1 and relies on the same observation: a
node is active as soon as at least one of its active neighbors activated him. Since these
events are independent (hence the name of the model), the times Ti j required for
activation along the edges of the network are also independent. For more precisions,
see for example [52]. �

In general, pi j(t) is not a probability density over R+ as it does not integrate to one,
and P(Ti j = +∞) = 1 −

∫ +∞

0 pi j(t)dt = exp(−
∫ +∞

0 Fi j(t)dt). Proposition 2 provides
a simple mechanism for simulating CTIC, as one can first draw one independent
random variable Ti j per edge, and then use a shortest path algorithm to compute the
infection times τi for each node of the network.

In what follows, we focus on this model due to its expressiveness and broad use
in modern social network studies. However, the large-scale dynamics of all diffusion
models are relatively similar and exhibit the same threshold behavior.
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4.4 LARGE-SCALE DYNAMICS OF INDEPENDENT
CASCADES

At the scale of the network, the emergent behavior of information cascades display
several typical characteristics which are common in most diffusion processes, in-
cluding epidemics and computer viruses. For instance, Fig. 4.1 shows the number of
identified cases of Ebola during a recent crisis, the number of queries for “pokemon
go” when the game became viral, as well as the simulation of an Independent Cas-
cade (see Model 4 in Sec. 3). All these diffusion processes exhibit similar behavior:

1. Explosive start: The cascade starts with an exponential increase and quickly
reaches a non-negligible amount.

2. Saturation point: After a sharp increase during the early phase of the diffu-
sion, the process reaches a saturation point and comes to a halt. Note that, for
information cascades, a residual activity may produce a linear slope after the
end of the diffusion. However, we ignore this aspect in our study.

As a consequence, we focus on four main characteristics of interest to describe
the large-scale dynamics of information cascades:

1. Existence: Is the cascade powerful enough to enter the explosive phase?

2. Saturation point: What is the final reach of the cascade?

3. Time for action: When is the explosion taking place?

4. Explosive rate: How fast is the initial exponential increase of the cascade?

These four characteristics are summarized in a simulated toy example on Fig. 4.1(c).
In the following sections, we provide estimates of these quantities depending on the
diffusive properties of the process as well as the structure of the social network.

4.4.1 EXISTENCE OF A SUPERCRITICAL CASCADE
Intuitively, an information cascade may only sustain itself if, on average, people that
receive the message share it to more than one of their neighbors. When the network
connectivity is too low, the cascade cannot reach a large audience before dying out.
This is highlighted by the following upper bound relating a measure of network
connectivity introduced in [12], the Hazard radius, to the long-term influence.

Definition 3. Hazard radius ρ
H

(F ) – For a diffusion process CTIC(F ), ρ
H

(F ) is the
largest eigenvalue of the symmetrized and integrated Hazard matrix:

ρ
H

(F ) = ρ

(∫ +∞

0

F (t) + F (t)T

2
dt

)
, (4.10)

where ρ(·) = maxi |λi| and λi are the eigenvalues of the input matrix.
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FIGURE 4.1 Main large-scale characteristics of diffusion processes ap-
pearing in real and simulated cascades

(a) Number of Ebola cases in Ginea, Liberia and Sierra Leone (source: World
Health Organization); (b) number of searches for the query “pokemon go”
on the Google search engine (source: Google Trend). (c) Simulation of a
Continuous-Time Independent Cascade (see Model 4). The main large-scale
characteristics highlighted in our analysis are also summarized: existence of
outbreak, time before the explosion, explosive rate, and saturation point.
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When all edges of the social network have identical Hazard function Fi j(t), the
Hazard radius is proportional to the spectral radius of the adjacency matrix, which
has been shown to drive the spread of epidemics [9]. The following proposition
extends this result to Independent Cascades.

Proposition 3. Let S0 ⊂ V be a set of n0 influencer nodes, and ρ
H

(F ) the Hazard
radius of a CTIC(F ). Then, if ρ

H
(F ) < 1, the influence of S0 in CTIC(F ) is upper

bounded by:

σ(S0) ≤ n0 +

√
ρ
H

(F )
1 − ρ

H
(F )

√
n0(n − n0). (4.11)

Proof. This result relies on a non-trivial vector inequality between the activation
probabilities Zi at the end of the epidemic, defined as:

Zi = P(τi < +∞). (4.12)

Note that

‖Z‖1 =
∑

i

E[1{τi < +∞}] = σ(S 0), (4.13)

and any result on the vector Z will easily translate into a result on the influ-
ence. Proposition 2 leads to a relationship between the Zi, as for any vector c,
min j∈{1,...,n} c j < +∞ ⇔ ∃ j ∈ {1, ..., n} s.t. c j < +∞, and thus

1{τi < +∞} = 1{min j∈{1,...,n}(τ j + T ji) < +∞}

= 1 −
∏

j

(
1 − 1{τ j < +∞}1{T ji < +∞}

)
.

(4.14)

Taking the expectation and using the Fortuin–Kasteleyn–Ginibre (FKG) inequality
[53], a well-known result of mathematical physics, to prove the positive correlation
between the variables 1{τi < +∞}, the following inequality arises after a short cal-
culation:

∀i < S 0, Zi ≤ 1 − exp

−∑
j

H jiZ j

 . (4.15)

This inequality upper bounds the expected activation of a node with the expected
activation of its neighbors, and can be turned into a bound on the norm of Z using the
spectral radius of the matrix H . The final step of the proof is rather calculatory and
relies on Jensen’s inequality and the definition of the spectral radius for symmetric
matrices.The complete derivation is available in [12]. �

Hence, the Independent Cascade is subcritical when ρ
H

(F ) < 1, and the number
of active users remains negligible compared to the size of the network: σ(S0) =

O(
√

n) � n. Note that we assume that the number of influencer nodes n0 is bounded
and does not depend on n.
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FIGURE 4.2 Upper bound on the saturation point

Function γ defined in Eq. 4.17. When ρ
H

(F ) < 1, the function is equal to 0, then
increases and saturates to γ = 1 as ρ

H
(F ) tends to infinity.

4.4.2 LONG-TERM BEHAVIOR OF INDEPENDENT
CASCADES

When the cascade is efficient enough to propagate to a large proportion of the net-
work, it displays a sharp increase before saturating to a limit value. Although the
precise value of this limit influence is hard to evaluate, several upper bounds have
been provided and proven in the literature [12, 54]. We now provide such a result
relating the long-term influence to the Hazard radius of the cascade.

Proposition 4. Let S0 ⊂ V be a set of n0 influencer nodes, and ρ
H

(F ) the Hazard
radius of a CTIC(F ). Then, if ρ

H
(F ) > 1, the long-term influence of S0 in CTIC(F )

is upper bounded by:

σ(S0) ≤ n0 + γ(n − n0) + cn
√

n0(n − n0) , (4.16)

where cn =
√

η
1−η , η = (1 − γ)ρ

H
(F ) and γ ∈ [0, 1] is the unique positive solution of

the equation:

γ = 1 − exp
(
−ρ

H
(F )γ

)
. (4.17)

Proof. This result is also a consequence of Eq. 4.15 relating the expected activations
Zi. See [12]. �

In essence, the proportion of active nodes after the cascade is negligible when
ρ
H

(F ) < 1, and at most γ when ρ
H

(F ) > 1, where γ is defined by the implicit equa-
tion γ = 1 − exp

(
−ρ

H
(F )γ

)
. Fig. 4.2 shows the proportion γ of Proposition 4 with

respect to the Hazard radius ρ
H

(F ).
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4.4.3 EXPLOSIVE DYNAMICS IN THE SUPERCRITICAL
REGIME

Finally, the intermediate regime when the cascade grows exponentially can be an-
alyzed using a modified version of the Hazard radius, known as Laplace Hazard
radius.

Definition 4. Laplace Hazard matrix L(s) – Let pi j be the edge transmission proba-
bilities defined in Eq. 4.9. For s ≥ 0, let L(s) be the n × n matrix, called as Laplace
Hazard matrix, whose coefficients are:

Li j(s) =

 − p̂i j(s)
(∫ +∞

0 pi j(t)dt
)−1

ln
(
1 −

∫ +∞

0 pi j(t)dt
)

if (i, j) ∈ E
0 otherwise

, (4.18)

where p̂i j(s) denotes the Laplace transform of pi j defined for every s ≥ 0 by p̂i j(s) =∫ +∞

0 pi j(t)e−stdt.

Definition 5. Laplace Hazard radius ρ
L
(s) – For a diffusion process CTIC(F ) and

s ≥ 0, ρ
L
(s) is the largest eigenvalue of the symmetrized Laplace Hazard matrix:

ρ
L
(s) = ρ

(
L(s) +L(s)T

2

)
, (4.19)

where ρ(·) = maxi |λi| and λi are the eigenvalues of the input matrix.

This concept is slightly more complicated than the Hazard radius. When s = 0,
the Laplace Hazard radius coincides with the Hazard radius: ρ

L
(0) = ρ

H
(F ). How-

ever, when s is large, the Laplace Hazard radius captures the short-term behavior of
the hazard function by reducing the impact of long times through the Laplace trans-
form. Quite surprisingly, the explosive rate of the cascade is upper bounded by the
inverse value ρ−1

L
(1). This is discussed by the following proposition.

Proposition 5. Let t ≥ 0, S0 ⊂ V be a set of n0 influencer nodes, and ρ
L

the Laplace
Hazard radius. Then, the short-term influence of S0 in CTIC(F ) at time t is upper
bounded by:

σ(S0, t) ≤ n0 + (2n0)1/3(n − n0)2/3 exp
(
ρ−1
L

(1)t
)
. (4.20)

Proof. This result relies on a similar equation to Eq. 4.15 describing the dynamics of
the cascade instead of its long-term stable regime. More specifically, Proposition 2
shows that, for any t ≥ 0, the variables 1{τi < t} are related according to:

1{τi < t} = 1 −
∏

j

(
1 − 1{τ j + T ji < t}

)
. (4.21)

Now, denoting as Zi(t) = P(τi < t) the probability that node i is active at time t, one
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may show the following vectorial inequality relating the variables Zi(t):

Zi(t) ≤ 1 − exp

−∑
j

(F ji ∗ Z j)(t)

 , (4.22)

where ( f ∗ g)(t) =
∫
R

f (s)g(t − s)ds is the convolution product. From this inequal-
ity, one may prove an upper bound on the Laplace transform of the influence σ̂(s) =∫ +∞

0 σ(S 0, t)e−stdt, directly translating into an upper bound on the exponential in-
crease of the influence. Again, the complete derivation is available in [11]. �

This result has two implications (for more precise results see [11]):

• First, the influence is at most increasing at an exponential rate of ρ−1
L

(1).

• Second, this also provides a characteristic time under which the cascade is still
in its early phase. More precisely, before the critical time

t ≤
ln n

3ρ−1
L

(1)
, (4.23)

the cascade is subcritical and the influence is negligible: σ(S0, t) = O(n2/3).

4.5 MONITORING INFORMATION CASCADES
Having presented the fundamental theoretical properties of diffusion processes re-
lated to information propagation over networks, we now discuss an efficient approach
to the generic problem of optimizing influence (maximizing or minimizing) using ac-
tions that can shape, i.e. modify, the activity of single users. For instance, a market-
ing campaign may have a certain advertisement budget that can be used on targeted
users of a social network. While these targeted resources are usually represented as
new influencer nodes that will spread the piece of information, we rather consider
the more refined and general case in which each resource will essentially alter the
Hazard functions Fi j associated to a target node i, thus increasing, or decreasing, the
probability for i to propagate by sharing the information with its neighbors.

Our generic framework assumes that a set of feasible Hazard matricesF ⊂ R+ →

R
n×n
+ is available to the administrator. This set virtually contains all admissible poli-

cies that one could apply to the network. Then, the concern is to find the Hazard
matrix F ∈ F that minimizes, or maximizes depending on the task of interest, the
influence. In Sec. 4.7 we show that two problems that have been a major focus of the
literature so far, namely the edge-deletion problem [14] and the node-immunization
problem [15] are particular instances of this framework. Note that this framework
is generic enough to describe complex strategies that may use several immunization
options by deploying simultaneously resources of different types (removal of edges,
nodes, partial immunization, etc).
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Problem 1. Determining the optimal feasible policy – Given a graph G, a number
of influencers n0 and a set of admissible policies F, find the optimal policy:

F ∗ = argmin
F ∈F

σ∗n0
(F ), (4.24)

whereσ∗n0
(F ) = max{σ(S0) : S0 ⊂ V and |S0| = n0} is the optimal influence (accord-

ing to Eq. 4.24 this is the minimum) over any possible set of n0 influencer nodes.

Problem 1 cannot be solved exactly in polynomial time. The exact computation
of the maximum influence σ∗n0

(F ) is already a hard problem on its own, and mini-
mizing this quantity adds an additional layer of complexity due to the non-convexity
of the maximum influence w.r.t. the Hazard matrix (note: F 7→ σ∗n0

(F ) is positive,
upper bounded by n and not constant).

Proposition 6. For any size of the set of influencers n0, the computation of σ∗n0
(F ) is

#P-hard.

Proof. We prove the theorem by reduction from a known #P-hard function: the com-
putation of the influence σ(S0) given a set of influencers S0 of size n0 (see Theorem
1 of [55]). Indeed, let CTIC(F ) be an Independent Cascade defined on G = (V,E).
We can construct a new graph G′ = (V′,E′) as follows: for each influencer node
i ∈ S0, add a directed chain of n nodes {vi,1, ..., vi,n} ⊂ V

′ and connect vi,n to i by
letting the transmission probabilities along the edges be all equal to one. Then, the
maximum influence σ∗n0

is achieved with the nodes S ′0 = {vi,1 : i ∈ S0} as influencer,
and σ∗n0

= n n0 + σ(S0). The result follows from the #P-hardness of computing σ(S0)
given S0. �

The standard way to approximate the maximum influence is to employ incremen-
tal methods where the quality of each potential influencer is assessed using a Monte
Carlo approach. In the following, we assume that the feasible set F is convex and
included in a ball of radius R. Also, the requirement of Eq. 4.7, that network edges
correspond to non-zero Hazard functions, holds for every feasible policy F ∈ F.
Therefore, the number of edges E upper bounds the number of non-zero Hazard
functions for any F ∈ F.

Remark 1. Although Problem 1 focuses on the minimization of the maximum influ-
ence, the algorithm presented in this paper is also applicable to the opposite task of
influence maximization. Having a common ground for solving these opposite prob-
lems can be useful for applications where both opposing aims can interest different
actors, e.g. in market competition. For the maximization, our algorithm would use a
gradient ascent instead of a gradient descent optimization scheme. While the perfor-
mance of the algorithm in that case may be competitive to state-of-the-art influence
maximization algorithms, the non-convexity of this problem prevents us from pro-
viding any theoretical guarantees regarding the quality of the final solution.
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4.6 AN ALGORITHM FOR REDUCING INFORMATION
CASCADES

As it has been mentioned, solving exactly the influence optimization problem is com-
putational intractable. Here, we propose to exploit the upper bound given in Proposi-
tion 4 as a heuristic for approximating the maximum influence. This approach can be
seen as a convex relaxation of the original NP-Hard problem, and allows the use of
convex optimization algorithms for this particular problem. The relaxed optimization
problem thus becomes:

F ∗ = argmin
F ∈F

ρ
H

(F ). (4.25)

When the feasible set F is convex, this optimization problem is also convex and
our proposed method called NetShape uses a simple projected subgradient descent
(see e.g. [56]) in order to find its minimum and make sure that the solution lays inF.
However, special care should be taken to perform the gradient step since, although
the objective function ρ

H
(F ) admits a derivative w.r.t. the norm

‖F ‖ =

√√√∑
i, j

(∫ +∞

0

∣∣∣Fi j(t)
∣∣∣ dt

)2

, (4.26)

the space of matrix functions equipped with this norm is only a Banach space in the
sense that the norm ‖F ‖ cannot be derived from a well chosen scalar product. Since
gradients only exist in Hilbert spaces, gradient-based optimization methods are not
directly applicable.

In the NetShape algorithm, the gradient and projection steps are performed on the
integral of the Hazard functions

∫ +∞

0 Fi j(t)dt by solving the optimization problem
bellow:

F ∗ = argmin
F̂ ∈F

∥∥∥∥∥∥
∫ +∞

0

(
F̂ (t) − F (t)

)
dt + η uF uT

F

∥∥∥∥∥∥
2
, (4.27)

where η > 0 is a positive gradient step, uF is the eigenvector associated to the
largest eigenvalue of the matrix

∫ +∞

0
F (t)+F (t)T

2 dt, and uF uT
F

is a subgradient of the
objective function, as provided by the following proposition.

Proposition 7. A subgradient of the objective function f (M) = ρ
( M+MT

2
)

in the space
of integrated Hazard functions, where M is a matrix, is given by the matrix:

∇ f (M) = uMuT
M , (4.28)

where uM is the eigenvector associated to the largest eigenvalue of the matrix M+MT

2 .

Proof. For any matrix M, let f (M) = ρ
( M+MT

2
)

= maxx : ‖x‖2=1 xTMx, and uM be such
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Algorithm 1 – NetShape meta-algorithm
Input: feasible set F ⊂ R+ → R

n×n
+ , radius R > 0 of F, initial Hazard matrix F ∈

F, approx. parameter ε > 0
Output: Hazard matrix F ∗ ∈ F

1: F ∗ ← F
2: T ← dR2

ε2 e

3: for i = 1 to T − 1 do
4: uF ← compute the eigenvector associated to the spectral radius ρ

H
(F )

5: η← R
√

i

6: F ← argmin
F̂ ∈F

∥∥∥∥∫ +∞

0

(
F̂ (t) − F (t)

)
dt + η uF uT

F

∥∥∥∥
2

7: F ∗ ← F ∗ + F

8: end for
9: return 1

T F
∗

an optimal vector. Then, we have f (M + ε) = uT
M + ε(M + ε)uM+ε ≥ uT

M(M + ε)uM =

f (M) + uT
MεuM , and, since uT

M ε uM =
〈
uMuT

M , ε
〉
, uMuT

M is indeed a subgradient for
f (M). �

The projection step of line 6 in Alg. 1 is an optimization problem on its own, and
NetShape algorithm is practical if and only if this optimization problem is simple
enough to be solved. In the next sections we will see that, in many cases, this opti-
mization problem can be solved in near linear time w.r.t. the number of edges of the
network (i.e. O(E ln E)), and is equivalent to a projection on a simplex.

4.6.1 CONVERGENCE AND SCALABILITY
Due to the convexity of the optimization problem in Eq. 4.25, NetShape finds the
global minimum of the objective function and, as such, may be a good candidate to
solve Problem 1. The complexity of the NetShape algorithm depends on the com-
plexity of the projection step in Eq. 4.27. Each step of the gradient descent requires
the computation of the first eigenvector of an n × n matrix, which can be computed
in O(E ln E), where E is the number of edges of the underlying graph. In most real
applications, the underlying graph on which the information is diffusing is sparse, in
the sense that its number of edges E is small compared to n2.

Proposition 8. Assume that F is a convex set of Hazard matrices included in a ball
of radius R > 0 w.r.t. the norm in Eq. 4.26, and that the projection step in Eq. 4.27
has complexity at most O(E ln E). Then, the NetShape algorithm described in Alg. 1
converges to the minimum of Eq. 4.25. Moreover, the complexity of the algorithm is
O( R2

ε2 E ln E).
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Algorithm 2 – NetShape partial quarantine problem
Input: graph G = (V,E), matrices of Hazard functions before and after treatment
F , F̂ ∈ F, approximation parameter ε > 0, number of treatments k

Output: matrix of Hazard functions F ∗ ∈ F
1: X ← 0, X∗ ← 0
2: F ←

∫ +∞

0 F (t)dt
3: ∆←

∫ +∞

0 (F̂ (t)dt − F (t))dt
4: R←

√
k maxi j ∆i j

5: T ← dR2

ε2 e

6: for i = 1 to T − 1 do
7: M ← F + X �∆

8: u← the largest eigenvector of 1
2 (M + MT)

9: Y ← X �∆ − R
√

i
uuT

10: X ← argminX′∈[0,1]n×n,‖X′‖1≤k ‖X
′ �∆ − Y‖2 // projection step (Alg. 3)

11: X∗ ← X∗ + X

12: end for
13: return F ∗ = (1 − 1

T X∗)�F + 1
T X∗ � F̂

Proof. This is a direct application of the projected subgradient descent to the prob-
lem:

H∗ = argmin
H∈H

ρ

(
H +HT

2

)
, (4.29)

whereH =
{∫ +∞

0 F (t)dt ∈ Rn×n : F ∈ F
}

is the set of feasible Hazard matrices. The
convergence rate of such an algorithm can be found in [56]. �

Remark 2. The corresponding maximization problem is not convex anymore and
only convergence to a local maximum can be expected. However, when the changes
in the Hazard functions are relatively small (e.g. inefficient control actions, or only a
limited number of treatments available to distribute), then NetShape achieves fairly
good performance.

4.7 CASE STUDIES
In this section, we illustrate the generality of our framework by reframing well-
known diffusion suppression problems that can find application in rumor control
that has been discussed extensively in this chapter. Using Problem 1 we derive the
corresponding variants of the NetShape algorithm.
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Algorithm 3 – Projection step for the partial quarantine problem
Input: δ, y ∈ RE , budget k ∈ (0, E)
Output: control actions vector x′

1: for i = 1 to E do
2: µi ← 2δiyi

3: µE+i ← 2δi(yi − δi)
4: end for
5: sort µ into µπ(1) ≥ µπ(2) ≥ ... ≥ µπ(2E)
6: d ← 0, s← 0, i← 1
7: while s < k and µπ(i) ≥ 0 do
8: d ← d + 1{π(i) ≤ E} 1

2δ2
π(i)
− 1{π(i) > E} 1

2δ2
σ(i)−E

9: s← s + d(µπ(i) − µπ(i+1))
10: i← i + 1
11: end while
12: z← max{0, µσ(i) + s−k

d }

13: return x′ s.t. x′i = max{0,min{ 2δiyi−z
2δ2

i
, 1}}

For simplicity, we denote as M �M′ the Hadamard product between the two ma-
trices (i.e. coordinate-wise multiplication), as ∆ =

∫ +∞

0

(
F̂ (t) − F (t)

)
dt the matrix

with the integrated coordinate-wise difference of two Hazard matrices in time, and
as 1 ∈ Rn the all-one vector (see notations in Tab. 4.1).

4.7.1 PARTIAL QUARANTINE
The quarantine approach aims to remove a small number of edges in order to mini-
mize the spread of the contagion. This strategy is highly interventional in the sense
that it totally removes edges, but in order to be practical it has to remain at low scale
and affect a small amount of edges. This is the reason why it is mostly appropriate
for dealing with the initial very few infections. The partial quarantine setting is a
relaxation where one is interested to decrease the transmission probability along a
set of targeted edges by using local and expensive actions.

Definition 6. Partial quarantine – Consider that a marketing campaign has k control
actions to distribute in a network G = (V,E). For each edge (i, j) ∈ E, let Fi j and F̂i j

be the Hazard matrices before and after applying control actions, respectively. If X ∈
[0, 1]n×n is the control actions matrix and Xi j represents the amount of suppressive
action taken on edge (i, j), then the set of feasible policies can be expressed as:

F=
{
(1 − X)�F + X � F̂ : X ∈ [0, 1]n×n, ‖X‖1≤ k

}
. (4.30)

Example: For a non-negative scalar ε ≥ 0, we may consider F̂ = (1− ε)F in order
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to model the suppression of selected transmission rates; formally:

F =
{
(1 − εX)�F : X ∈ [0, 1]n×n, ‖X‖1 ≤ k

}
. (4.31)

Importantly, for the special case where ε = 1, this problem becomes equivalent to
the setting discussed in [10] and [14].

A straightforward adaptation of Alg. 1 to this setting leads to the NetShape
algorithm for partial quarantine described in Alg. 2. The projection step is per-
formed by Alg. 3 on the flattened versions x′, δ, y ∈ RE of the matrices X′, ∆

and Y , and the parameter R is chosen to upper bound maxF ′∈F ‖F ′ − F ‖2 =

maxX∈[0,1]n×n,‖X‖1≤k ‖X �∆‖2.

Lemma 1. The projection step of Alg. 1 for the partial quarantine setting of Defini-
tion 6 is:

X∗ = arg minx′∈[0,1]E , ‖x′‖1≤k

∥∥∥x′ � δ − y
∥∥∥

2 , (4.32)

where δ and y are flattened version of, respectively, ∆ and Y = X �∆ − ηuF uT
F

.
Moreover, this problem can be solved in time O(E ln E) with Alg. 3, where E is the
number of edges of the network.

Proof. Eq. 4.32 directly follows from Eq. 4.27 and the definition of F. Alg. 3 is an
extended version of the L1-ball projection algorithm of [57]. Karush–Kuhn–Tucker
(KKT) conditions for the optimization problem of Eq. 4.32 imply that ∃z > 0 s.t. ∀i,
x′i = max{0,min{ 2δiyi−z

2δ2
i
, 1}}. The algorithm is a simple linear search for this value.

Finally, the sorting step (Alg. 3, line 5) has the highest complexity O(E ln E), and the
loops perform at most 2E iterations, hence an overall complexity O(E ln E). �

4.7.2 PARTIAL NODE IMMUNIZATION
More often, control actions can only be performed on the nodes rather than the net-
work edges that was the case of the previous section. For example, imagine adver-
tising campaigns that aim to enhance the diffusion of a product or, more relevant
to the suppressive scenario, decision makers that debunk false information target-
ing specific influencer nodes. In that case, the effect of the control actions must be
aggregated over nodes in the following way.

Definition 7. Partial node immunization – Consider that a control campaign has k
control actions to distribute in a network G = (V,E). For each edge (i, j) ∈ E, let
Fi j and F̂i j be the Hazard matrices before and after applying control actions, respec-
tively. If x ∈ [0, 1]n is the control actions vector and xi represents the amount of
suppressive action taken on node i, then we express the set of feasible policies as:

F=
{
(1− x1T)�F + x1T � F̂ : x ∈ [0, 1]n, ‖x‖1 ≤ k

}
. (4.33)
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This setting corresponds to partial quarantine in which all outgoing edges of a
node are impacted by a single control action. When F̂ = 0, this problem corresponds
to the node removal problem (or vaccination), that consists in removing k nodes from
the graph in advance in order to minimize a future contagion (see [15]).

Given a vector x, the projection problem to solve is:

x∗ = argmin
x′∈[0,1]n,‖x′‖1≤k

∥∥∥(x′1T)�∆ − Y
∥∥∥

2

= argmin
x′∈[0,1]n,‖x′‖1≤k

∑
i

x2
i

(∑
j

∆2
i j

)
− 2xi

(∑
j

∆i jYi j

)
= argmin

x′∈[0,1]n,‖x′‖1≤k

∥∥∥x′ � δ′ − y′
∥∥∥

2 , (4.34)

where δ′i =
√∑

j ∆2
i j and y′i =

∑
j ∆i jYi j√∑

j ∆2
i j

. Hence we can apply the projection step of

Alg. 3 for the partial node immunization problem using δ′ and y′, and its complexity
is O(n ln n).

Remark 3. Since the upper bound of Proposition 4 holds as well for SIR epidemics
[51] (see also [11]), this setting may also be used to reduce the spread of a disease
using, for example, medical treatments or vaccines. More specifically, the Hazard
matrix for an SIR epidemic is the following:

H = ln
(
1 +

β

δ

)
A, (4.35)

where δ is the recovery (or removal) rate and β is the transmission rate along edges
of the network, and A the adjacency matrix. Then, a medical treatment may increase
the recovery rate δ for targeted nodes, thus decreasing all Hazard functions on its
outgoing edges, and the partial node immunization setting is applicable.

Network Nodes Edges Nodes in largest SCC
SBD10ER 500 2, 701 497 :: 99.4%
Facebook 4, 039 88, 234 4, 039 :: 100.0%
Gnutella 62, 586 147, 892 14, 149 :: 22.6%
Epinions 75, 879 508, 837 32, 223 :: 42.5%

TABLE 4.2 Datasets

Details of the benchmark real networks. The last column is the size of the
strongly connected component.
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4.8 EXPERIMENTS
4.8.1 EXPERIMENTAL SETUP AND EVALUATION
In this section, we provide empirical evidence for the discussion of this chapter on
controlling Independent Cascades under the ICM. We set the focus of this empirical
evaluation in the offline partial node immunization problem under the ICM, as de-
scribed in Sec. 4.7.2, and we are interested to see in practice the performance gains
of the NetShape algorithm when compared to other baseline and state-of-the-art al-
ternative policies.
Compared policies. We provide comparative experimental results against several
strategies, namely:

i) Rand: random selection of nodes;

ii) Degree: selection of k nodes with highest out-degree;

iii) WeightedDegree: selection of k nodes with highest sum of outgoing edge
weight wi j =

∫ +∞

0 Fi j(t)dt. This strategy can also be seen as the optimization
of the first influence lower bound LB1 of [54].

iv) NetShield algorithm [15]. Given the adjacency matrix of a graph, this outputs
the best k-nodes to totally immunize so as to decrease the vulnerability of the
graph. This is done by assigning to each node a shield-value that is high for
nodes with high eigenscore and no edges connecting them. Note that, despite
the fact that NetShield is tailored for immunization on unweighted graphs, it
is not general enough to account for weighted edges and partial immunization
as in our experimental setting.

Network datasets. The evaluation is performed on three benchmark real datasets (see
Tab. 4.2) and the results are presented in subfigures of Fig. 4.4:

(a) a network of ‘friends lists’ from Facebook [58];

(b) the Gnutella peer-to-peer file sharing network [58],

(c) the who-trust-whom online review site Epinions.com;

(d) a synthetic random network of n = 500 nodes forming group structure (stochas-
tic block-diagonal) that has been generated as follows. First, 10 equally-sized
Erdös-Rényi clusters were independently formed with intra-cluster edge cre-
ation probability pinter = 0.1. Then, their adjacency matrices were used to com-
pose a block-diagonal structure with uniform inter-cluster rewiring probability
pintra = 0.001. Fig. 4.3a shows the structure of the final adjacency matrix (as
having binary edge weights).

Note that the above networks only provide an unweighted adjacency matrix, thus
only the existence, or not, of an edge between a pair of nodes is known. NetShape
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and the analysis of Sec. 4.5 is general covering time-variable propagation functions
between nodes. However, without loss of generality and for the sake of simplifying
the experimental setup, we decided to use a simple class of propagation functions.
For the generation of the matrix of edge-transmission probability rates {pi j} we use
a trivalency model, according to which, the pi j values are drawn chosen uniformly
at random from a small set of constants. In our case that is set to {plow, pmed, phigh}

and the specific used values are mentioned explicitly for each dataset at the figures’
captions.

Each treatment unit of the budget can be assigned to a single node and, here, we
assume that it can cause a fixed decrease to the node’s transmission probability rates
along all of its outgoing edges (70% for the SBD10ER and 50% for the real networks).

In the experiments we evaluate the efficiency of the immunization policies on the
basis of two measures for both of which lower values are better:

• Spectral radius decrease. We examine the extend of the decrease of the spec-
tral radius of the Hazard matrix F and, hence, the decrease of the bound of the
max-influence as described in Proposition 4.

• Expected influence decrease. We compare the performance of policies in terms
of Problem 1. To this end, for each Hazard matrix F , the influence is com-
puted as the average number of infected nodes at the end of over 1,000 runs
of the Independent Cascade CTIC while applying that specific Hazard matrix
F . Each time a single initial influencer is selected by the influence maximiza-
tion algorithm Pruned Monte Carlo [40] by generating 1,000 vertex-weighted
directed acyclic graphs (DAGs).

In the empirical study, we focus on the scenario where the spectral radius of the
original network is approximately one, which is the setting in which decreasing the
spectral radius has the most impact on the upper bounds in Proposition 4 and [12].
We believe that this intermediate regime is the most meaningful and interesting in
order to test the different algorithms.

4.8.2 RESULTS
The results on the synthetic network are shown in Fig. 4.3 and those on the three
real network datasets in subfigures of Fig. 4.4. The subfigures correspond to the two
evaluation measures that we use, for a wide range of budget size k in proportion to
the number of nodes of that network.

Firstly, we should note that the influence and the spectral radius measures cor-
relate generally well across all reported experiments; they present similar decrease
w.r.t. budget increase and hence ‘agree’ in the order of effectiveness of each policy
when examined individually. As expected, all policies perform more comparably
when very few or too many resources are available. In the former case, the very
‘central’ nodes are highly prioritized by all methods, while in the latter the signif-
icance of node selection diminishes. Even simple approaches perform well in all
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FIGURE 4.3 Comparison of policies on a synthetic network

Comparison of NetShape’s performance against competitors on the synthetic
network SBD10ER which is a composition of 10 Erdös-Rényi clusters (see de-
tails in Sec. 4.8.1). The values used for the trivalency model to generate edge
weights are p ∈ {.1, .2, .5}. The tested budget values are: k ∈ {5, 10, 20, 50, 100}.
(a) the structure of the generated non-symmetric, block-diagonal adjacency
matrix (here plotted as a binary matrix); (b) spectral radius ρ

H
(F ) vs. budget k,

(c) influence: the expected proportion of infected nodes σ
n vs. k. Lower values

are better.

but Gnutella network where we get the most interesting results. NetShape achieves
a sharp drop of the spectral radius early (i.e. for small budget k) in Gnutella and
Epinions networks, which drives a large influence reduction. With regards to in-
fluence minimization, the difference to competitors is bigger though in Gnutella

which is the most sparse and has the smallest strongly connected component (see
Tab. 4.2). In Facebook, the reduction of the spectral radius is slower and seems less
closely related with the influence, in the sense that the upper bound that we optimize
is probably less tight to the behavior of the process.

Overall, the performance of the proposed NetShape algorithm is mostly as good
or superior to that of the competitors, achieving up to a 50% decrease of the influence
on the Gnutella network compared to its best competitor. Similar findings can be
claimed for the experiments on the synthetic network SBD10ER.

4.9 CONCLUSION
The future of the diffusion networks field is full of interesting problems and potential
applications. It will continue to enrich our understanding of diffusive phenomena
and, at a second level, is expected to also change how information is circulated in
online social networks.

The subject of this chapter was first to analyze the way information diffusion
takes place in modern large-scale online social networks and the challenges regard-
ing the control of certain types of undesired diffusion such as rumors, fake news,
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FIGURE 4.4 Comparison of policies on real networks

The evaluation is conducted on benchmark real networks in terms of two eval-
uation measures namely the spectral radius and the expected influence reduc-
tion. For each network, at the top row is plotted the ρ

H
(F ) vs. budget k, and at

the bottom row the expected proportion of infected nodes σ
n vs. k. (a) Facebook

network, by generating infection rates p ∈ {.0001, .001, .01}; (b) Gnutella network
with p ∈ {.1, .3, .6}; (c) Epinions network with p ∈ {.005, .005, .05}. Lower values
are better.

and others. We have presented an overview of the complex context in which these
information-related diffusive phenomena appear and how individuals participate in
the process acting as users of online social platforms.

To present the background of related problems, we went through various ap-
proaches for modeling information cascades, including the early used virus models
and the more recent Independent Cascades model. Specifically for the latter model,
we spoke about its large-scale dynamics and how that relates to the network prop-
erties, the existence of a threshold value that defines the point of transition between
subcritical and supercritical behavior, and the connection of that threshold value to
the spectral radius of the Hazard matrix of the network.

Subsequently, we discussed a framework that we proposed recently for spectral
activity shaping under the Continuous-Time Independent Cascades Model [13] that
allows the administrator for local control actions by allocating targeted resources
which can alter locally the spread of the process. The activity shaping is achieved via
the optimization of the spectral radius of the Hazard matrix which enjoys a simple
convex relaxation when used to minimize the influence of the cascade. In addition,
by reframing a number of use-cases, we explained that the proposed framework is
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general and includes tasks such as partial quarantine that acts on edges and partial
node immunization that acts on nodes. Notably, this generic framework can de-
scribe complex strategies that may use several immunization options by deploying
simultaneously resources of different types (removal of edges, nodes, partial immu-
nization, etc). Specifically for the influence minimization that is the one directly
related to rumor spreading control, we presented the NetShape method which was
compared favorably to baseline and a state-of-the-art method on real benchmark net-
work datasets.

Among the interesting and challenging future work directions, on the same line to
the presented framework, there can be the introduction of an ‘aging’ feature to each
piece of information that would model its loss of relevance and attraction through
time, and the theoretical study and experimental validation of the maximization
counterpart of Netshape method.
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