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Abstract

The use of centroids as prototypes for clustering text documents with the k-means family of
methods is not always the best choice for representing text clusters due to the high dimensio-
nality, sparsity, and low quality of text data. Especially for the cases where we seek clusters
with small number of objects, the use of centroids may lead to poor solutions near the bad initial
conditions. To overcome this problem, we propose the idea of synthetic cluster prototype that
is computed by first selecting a subset of cluster objects (instances), then computing the repre-
sentative of these objects and finally selecting important features. In this spirit, we introduce the
MedoidKNN synthetic prototype that favors the representation of the dominant class in a cluster.
These synthetic cluster prototypes are incorporated into the generic spherical k-means procedure
leading to a robust clustering method called k-synthetic prototypes (k-sp). Comparative experi-
mental evaluation demonstrates the robustness of the approach especially for small datasets and
clusters overlapping in many dimensions and its superior performance against traditional and
subspace clustering methods.

Keywords: clustering methods, document clustering, text mining, term selection, subspace
clustering

1. Introduction

Document clustering is an unsupervised learning approach for automatically segregating
similar documents of a corpus into the same group, called cluster, and dissimilar documents
to different groups. Formally, a corpus of N unlabeled documents is given and a solution
C={cj: j=1,...,k} is searched that partitions the document into k disjoint clusters.

Even small text datasets carry large vocabularies and certain undesirable effects arise due
to the curse of dimensionality [4]. The high dimensional and sparse (HDS) feature space in
combination with language phenomena such as polysemy, homosemy and metaphors, constitute
an adverse setting for clustering methods. When a labeled training dataset is provided, several
statistical options are available for feature selection [5, 6], even in case of multilabeled data
objects [53]. On the other hand, it is more complicated to select features in an unsupervised
setting and it is usually achieved using heuristics [49, 50, 51, 52]. Methods such as Latent
Semantic Indexing (LSI) [47], or Latent Dirichlet Allocation [48] (LDA), may discover the term
correlations but they map the data into a feature space of much lower dimensionality.
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Clustering algorithms are separated in two major categories hierarchical and partitional (for
a survey see [7]). The former produce a hierarchy of solutions, either by merging, or by divid-
ing clusters. Partitional approaches seek to discover a set of unique cluster representations that
describe properly the underlying data classes of a dataset. An objective function ®(C) evaluates
the quality of a data partition by quantifying how good the derived representations are for the
corresponding clusters. These methods start from a set of k cluster representations which are
improved iteratively in a way that ®(C) is optimized. Probabilistic methods use probabilistic
cluster models (or topic models) [9, 8], while non-probabilistic methods utilize representatives
in the feature space, called prototypes, that are used to represent the objects of a cluster. Typical
prototypes are the arithmetic mean called centroid, and the medoid that is a real object which is
representative for the cluster it belongs.

A popular partitional method is k-means [10] that represents each cluster with its centroid.
Many heuristic variations of k-means have been proposed and applied for text collections [11,
12, 13, 14]. Spherical k-means (spk-means) [22] is a modified version that utilizes the cosine
similarity measure to cluster the data by partitioning the unit hypersphere into k& hypercones, one
for each cluster. This method is fast and gives better clusters than traditional k-means [12].

Special algorithms have also been developed to deal with HDS feature spaces. The clustering
methodology aiming at finding clusters in subspaces of data instead of the entire feature space
is referred to as subspace clustering and its key characteristic is the simultaneous determination
of the object membership to clusters and the subspace of each cluster. Surveys on subspace
clustering in high dimensional spaces can be found in [29, 46]. Recently, much attention has
been received by methods that aim to identify the cluster structure in on-line high-dimensional
data streams [54, 55].

This work puts forth the idea that, although the centroids are the optimal cluster prototypes
with respect to certain objective functions (e.g. based on cosine similarity), their optimality could
also become a drawback in HDS feature spaces and in cases of low data quality (e.g. outliers,
noise). Especially, as the number of data objects becomes smaller compared to the complexity
of a clustering problem (i.e. number of clusters, dimensionality), the centroids become less
appropriate cluster representatives. Text documents constitute a typical example of data where
such an adverse setting is met.

In this paper we present the synthetic prototype, a novel type of cluster representative that,
given the object assignment to clusters, is computed in two steps: a) a reference prototype is
constructed for the cluster and then b) feature selection is applied on it. We propose the so-called
MedoidKNN reference prototype which is based on a subset of K objects of a cluster that are close
to its medoid. This synthetic prototype favors the representation of the objects of the dominant
class in a cluster, i.e. the class to which the majority of the cluster objects belong. Finally, we
modify the generic spk-means iterative procedure by incorporating synthetic prototypes. This
leads to a novel, effective and quite simple clustering method called k-synthetic prototypes (k-
sp). We conducted an extensive evaluation of the k-sp method examining several options for the
synthetic prototypes and comparing it to several traditional clustering methods such as spherical
k-means, agglomerative, spectral clustering and two soft subspace clustering methods.

The rest of this paper is organized as follows: in Section 2, a background discussion for
the document clustering problem is provided. In Section 3, we present our novel synthetic pro-
totype cluster representation and the k-synthetic prototypes clustering method. In Section 4,
comparative experimental results are reported and discussed, and finally in Section 5, we present
concluding remarks and future research directions.
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2. Background

2.1. Document Representation

A preprocessing step on the corpus decides which terms are meaningful to be included in
the corpus vocabulary V, a set of |V| unique features. Despite the fact that it is reasonable to
seek for complex representations for text data, such as graphs [1, 2, 3], the typical approach is to
represent each input document as a bag-of-words [18] feature vector d; € RV i=1,...,N, whose
elements are weight values denoting the significance of each vocabulary term for the document.
Typically, the weights are set using the ¢fxid f scheme and document vectors are normalized to
unit length with respect to Euclidean L,-norm. Hence, the i-th document is modeled as:
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where 1f;; is the frequency of j-th term in the i-th document and N “ the number of documents that

contain j-th term. The proximity between two documents is computed using cosine similarity,

considered to be an effective measure for text clustering [19, 20], that computes the cosine of the
angle between the two document vectors:

d; dj

. (cos) _ _ i J

sim'“*(d;, d;) = cos(0(d;, d))) = ——- .

v v lldilla  lldjll2

2

2.2. Properties of the Representation Space of Documents

The properties of the vector space in which text documents are represented are closely related
to the nature of human language. Even small text datasets carry very large vocabularies and, apart
from the known negative effects of the curse of dimensionality, the learning algorithms have to
deal with the existence of high sparsity. It has been observed that a document may have less
than 1% of the global corpus vocabulary [21] (non-zero vector dimensions) since there are terms
in the corpus vocabulary that do not appear in a given document although they are relevant to
its content. This is due to the fact that each document usually is a specific semantically narrow
instance of a much more general document class.

Moreover, two authors may express exactly the same ideas using different terms, for instance
using homosemous terms, metaphors or complex expressions, which introduces additional spar-
sity and dimensionality. Some noise is also present in text datasets, such as confusing polyse-
mous terms or even irrelevant features. Under this situation, documents of the same class present
average pairwise similarity comparable in magnitude to the similarity between documents from
different classes [27, 28]. For instance, let d,, dy, and d, three documents of the same class; it is
possible for d, to share a set of terms with d, and a different set of terms with d, whereas, at the
same time, d, and d, may exhibit no vocabulary intersection although this would be expected to
hold mostly for pairs belonging to different classes. In this context, certain qualitative issues arise
regarding the direct determination of a large number of nearest neighbors to an object [27, 28].
For example, if an object has non-zero similarity with K objects in the dataset (or a cluster), then
the direct determination of its nearest K’>K objects would unavoidably make guesses.

Document clustering differentiates from the high dimensional data clustering problems that
seek for a single global subspace of features in which there are observable clusters. Different
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document clusters are formed in generally different subspaces. Small text datasets should be
treated as document clustering cases of special interest. According to Heap’s power law [40],
the increase of the corpus vocabulary is sublinear to the number of included documents. In
other words, the relative dimensionality of the feature space, empirically defined as log(|V|/N),
is expected to be much larger for small datasets than for larger ones. This large vocabulary
diversity even between documents of the same class, justifies for the difficulty of clustering small
document datasets.

2.3. Clustering using k-means Family of Methods

The k-means procedure is a generic clustering approach that assumes a prototype to represent
each cluster and an objective function ®(C) that evaluates the quality of a partition C. In order
to solve a problem with k clusters the k prototypes are initialized usually by randomly selecting
k objects as cluster centroids (Forgy’s approach) and then the algorithm iterates to optimize the
objective function:

1. Reassignment step: each object is assigned to the cluster whose prototype is nearest to the
object.

2. Prototype batch update step: given the assignment of objects to clusters, each cluster
prototype is updated in a way that optimizes the objective function.

k-means minimizes the sum of squared Euclidean distances between the objects of the clusters
and the centroid prototypes Eq. 3, where the centroids are computed as the arithmetic mean
Hj = (1/nj)Ygec, di of the n; objects of that cluster:

k
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It converges to a local minimum of ®gs£(C) and the quality of the solution depends strongly on
the initial conditions. Its time complexity is O(tN |V|), where ¢ is the number of iterations until
convergence. The employed cluster prototypes constitute a choice that also affects the solution
quality. k-medoids is a robust method that represents a cluster with the medoid object defined as
the object that has the maximum average similarity to the objects of its cluster:
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In this case, Eq. 3 is computed with respect to the medoid prototypes and in Euclidean space

there is the disadvantage of complexity O(nz) to determine a cluster medoid.

Spherical k-means (spk-means) is a Varlant of k-means that utilizes the cosine similarity for
the data vectors normalized with respect to L,-norm. The maximized objective function is the
clustering cohesion. The optimal prototype for a cluster is its normalized centroid u;=s;/ “s j||2,
where s;=3 ;. di, and the overall clustering cohesion of a partition C is given by:
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A lot of research effort has been focused in the careful initialization of this family of algo-
rithms, due to its importance for the final clustering quality [35, 43, 44, 45]. Among the typical
object-based seeding techniques is the deterministic Kaufiman heuristic (or k-farthest heuristic)
[36] that tries to spread the initial centroids away from each other. It selects the most centrally
located object as the first centroid and each additional centroid is determined to be the object
farthest from the objects-centroids already selected. k-means++ [44], on the other hand, intro-
duces stochasticity: it starts with the uniform random selection of one object as the first centroid,
then each next centroid is determined using a weighted probability distribution. Specifically, the
probability for a candidate object to be selected as a new centroid is proportional to the squared
distance between the object and its nearest centroid previously selected. In [44] it is shown that
this initialization guarantees an O(logk) approximation to the optimal k-partition. However, all
the above initialization methods select objects as seeds and this may not be efficient in the text
feature space, since a document usually contains a very small percentage of the vocabulary terms.
This is further analyzed and experimentally illustrated in this work.

Clustering refinement is the post-processing procedure aiming to improve the clusters pro-
duced by a clustering method (note that in literature the term ‘refinement’ is also used to describe
the iterative optimization of an objective function). The refinement algorithm may be a special-
ized algorithm that proceeds to small changes in the clusters, such as single object reassignment
[41] and swapping the cluster memberships for pairs of objects [42]. It is also a practical choice
to refine the produced clusters using a clustering method of different characteristics to the initial
one (e.g. k-means starting with the clusters produced by a hierarchical clustering, agglomerative
or bisecting k-means). An alternative approach is the hybridized centroid-medoid heuristic [14]
that applies a small number of k-means iterations and tries to replace a centroid with a medoid
belonging in a set of candidate medoids precomputed off-line.

2.4. Text Document Subspace Clustering

The different topics are usually described by generally different subsets of terms which, in
combination with the high sparsity of the feature space, lead to the hypothesis that the underlying
cluster structure may be better to be sought in subspaces of the original feature space. The feature
selection that is applied in the preprocessing phase actually computes a single global subspace
where data clustering is performed. A more fuzzy feature selection would assign a global weight
to each dimension. Subspace clustering can be thought as to be an extension to feature selection
in the sense that it determines a subspace explicitly for each cluster during clustering.

In brief and according to [29], the main categorization of subspace clustering methods is
based on the relation between the axes of the subspaces they seek and the axes of the original
feature space. One approach, called generalized subspace clustering, is to seek for arbitrarily ori-
ented subspaces. Their major difficulty is to deal with the infinite search space of the candidate
subspaces. A second and more widely used approach is constrained to seek for subspaces with
axes parallel to the original. The projected subspace clustering lets no intersection between the
dimensions that span the different subspaces and hence, 2?—1 possible subspaces must be exam-
ined. The subcategory that lets different axis-parallel subspaces to have dimensions in common
is called soft projected clustering and usually different feature weights in [0,1] are assigned for
each cluster. The latter subcategory can be further split based on the searching approach adopted
regarding the feature set a method starts to work with. Top-down approaches start with the full
set of features and iteratively try to determine narrow subspaces for each cluster. On the other
hand, bottom-up approaches start from single dimension subspaces and use a strategy similar to
mining frequent itemset to increase their dimensionality.
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Apparently, there are important methodological differences in the literature of subspace clu-
stering, but a thorough analysis is beyond the scope of this work. In the rest of this section we
will discuss the recent research on top-down soft projected subspace clustering methods that de-
velop feature weighting mechanisms and incorporate them to k-means, and have also been tested
on the document clustering problem.

An abstract framework is presented in [30] that, using multiple feature vectors to repre-
sent each data object, is able to integrate the heterogeneous feature spaces in the k-means al-
gorithm. A convex-k-means algorithm is proposed that is based on a convex objective function
constructed as a weighted combination of the distortions of each individual feature subspace.
The algorithm simultaneously minimizes the average within-cluster dispersion and maximizes
the average between-cluster dispersion along all of the feature spaces. A method that received
much attention is Clustering on Subsets of Attributes (COSA) [37]. It is an iterative algorithm
that considers a feature weight vector to each data point, initially containing equal weights for
all features. Larger weights are assigned to features that present small dispersion in a neighbor-
hood around the reference object, which means that are more important. The next step is to use
these weights to compute some other weights corresponding to each pair of objects that, in turn,
update the distances for the computation of the nearest neighbors. The algorithm stops iterating
when weight vectors corresponding to objects become stable. COSA outputs a pairwise dis-
tance matrix based on a weighted inverse exponential distance and any distance-based clustering
method can produce the final clusters. The algorithm requires the user specification of the size
of neighborhood to consider, a second parameter that controls the fade of the exponential feature
weighting, while the major issue is that all the Nx|V| parameters should be estimated during the
process.

Some other algorithms were then developed that consider one feature weighting vector for
each cluster. Feature Weighting K-means (fwk-means) [39] aims to minimize the following ob-
jective function:
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where u; is the Li-normalized centroid of the j-th cluster and 4>1 a parameter that must be set in
advance. The term w?l(/x = dy)? computes the distance between the centroid y; and a document
d; on the specific I-th feature dimension. Initially, the weights are set to 1/|V| and the k centroids
are set in a random fashion. The optimization is then performed by iterating the following steps
until convergence:

1. Object assignment to their nearest cluster using the computed centroids and feature weights.
2. Computation of the cluster centroids using the computed feature weights.
3. Computation of the feature weights for each cluster using the computed cluster centroids.

Given the cluster centroids and the k feature weighting vectors of the previous iteration, the



optimal weight of the [-th feature for cluster ¢; is computed by:
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where o is the average dispersion of the vocabulary measured off-line in a sample of Nygp. data
objects. fwk-means adds this value because a feature weight is not computable if its dispersion
in a cluster is zero. If we let mfv; to be the mean feature value of the /-th feature in the data
sample then o is given by:
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Locally Adaptive Clustering (LAC) algorithm presented in [33] is quite similar to the Entropy
Weighting k-means (ewk-means) [31]. Both share some ideas with COSA, whereas the feature
weighting vectors are assigned to clusters instead of objects. Moreover, their search strategy is
more alike to fwk-means. A modified objective function is utilized, which is to add the weight
entropy e ]:Z‘Z‘jl wjlogwj; corresponding to each cluster in order penalize the identification of
clusters in subspaces spanned by very few features. The objective function of ewk-means is:
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subject to Eq. 7 and the value of y controls the focus of the objective function on the feature
weight entropy. The iterative optimization is identical to that of fwk-means and differ only on
the weight computation:
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COSA and fwk-means require the tuning of the value of the parameter controlling the size
of the subspaces that are sought (the value of y in ewk-means). LAC introduces an ensemble
approach that combines multiple clustering solutions discovered by LAC using different y values,
which produces a superior result than that of the participating solutions. The feature weights
of these methods enable the modeling of more complex cluster shapes than the spherical of
traditional k-means. However, the parameters that need to be estimated are doubled compared
to k-means: 2kXx|V| for the feature weights and the cluster centroids. This parameter increase
unavoidably causes a large increase to the number of local minima of the search space. Recently,
an adaptive weight-adjusting principle was adopted in [34], which at each step adds a Aw}; to
each wj; weight computed based on the extend of contribution of the weight to the clustering
quality. Finally, in [38] an algorithm similar to LAC and fwk-means is presented, also allowing
the incorporation of constraints derived from a labeled data subset.



3. The k-synthetic prototypes clustering method

3.1. Clustering Using Centroids and Medoids

From an optimization point of view, the normalized centroid is the prototype that maximizes
cluster’s cohesion Eq. 5. However, this optimality may also become a drawback in such a feature
space, especially at early clustering iterations where clusters have low homogeneousity due to
random initialization. More specifically, there exist two undesirable phenomena concerning the
use of centroids. At a data object level, the self-similarity phenomenon implies that the similarity
of a document with itself becomes the dominant factor for deciding about its nearest cluster
[12, 22]. This is explained by observing the similarity between a normalized centroid u; and a
document d in the respective cluster c;:

1
Wjed = Sl (d* d+ ;‘:jd* ) (13)
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Due to sparsity, the term d™- d;=1 can be large in magnitude compared to the sum of similarities
between d and the documents of c¢;, or the documents of other clusters. In an extreme case, a
document d € c; which has non-zero similarity only with documents from clusters other than c;,
may still determine c; as its nearest cluster, since due to the self-similarity term it may hold that:
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Hence, d may remain in an inappropriate cluster. This phenomenon appears more intense in
cases where there is a small number of objects per cluster in combination with high sparsity.

The second phenomenon is the feature over-aggregation that occurs when computing a cen-
troid for an impure cluster. Supposing that there is a feature subset f; strongly related to each
document class j, and a usually much larger subset fj‘ containing the remaining |V|—| fj"| terms,
then the learning process aims to find a cluster prototype, i.e. a weight vector in R, being
discriminative for that class. This means that for each cluster the clustering algorithm should try
to determine the | f *| representative features for its dominant class and to estimate their relative
weight dlstrlbutlon in the possible presence of | f | irrelevant features that should be assigned
with very low weights. The effectiveness of such an algorithm may be greatly affected by the
level of the relative significance of the features of f; to that of fj‘ in a cluster at a particular
iteration, which can be formally expressed by the following ratio:

Zief,.* Uji
V)
S uji

Feature over-aggregation appears at the initial iterations where very low d-ratio values are ob-
served in the clusters of poor quality. This prevents the prototypes from becoming more class
discriminative, since the non-informative features also affect the object assignment to clusters
and hence the problem is retained.

Both self-similarity and feature over-aggregation constrain the local search flexibility of the
k-means procedure and lead to poor solutions strongly dependent on initial conditions, where
often documents from two or more classes are assigned to the same cluster.
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Figure 1: The k-sp framework using synthetic prototypes.

In what concerns the use of medoid as cluster prototype, it does not present the self-similarity
and feature over-aggregation effect. However, as mentioned in Section 2.2, since each document
is a specific semantically narrow instance of the more general topics of its class, it contains a
very small fraction of vocabulary terms. Thus it is unlike for a single document to be a good
cluster representative.

3.2. Synthetic Cluster Prototypes

Traditionally, feature selection (in our case term selection) takes place in the preprocessing
phase. However, we adopt a dynamic selection scheme implemented in the form of synthetic
cluster prototypes, which are computed by first selecting objects and then features from each
cluster (Fig. 1). As clustering proceeds we exploit the information progressively produced in the
formed clusters to retain the important features for each cluster. To compute a synthetic prototype
we must define:

1. a reference prototype, an initial representative of the cluster constructed by a subset of its
objects, and

ii. feature selection on prototypes in order to select features from the reference cluster proto-
type.

The L,-normalized cluster representative derived by filtering the features of a reference prototype
is a synthetic prototype. These prototypes are generic, in the sense that they can be constructed by
considering any reference prototype or feature selection scheme. Omitting the feature selection
step is also a viable option, thus a reference prototype is also a synthetic prototype. In this case
feature selection is achieved implicitly since the reference prototype is computed using a subset
of the cluster objects and it may not contain all the vocabulary terms.

The proposed clustering algorithm is called k-synthetic prototypes (k-sp) and incorporates the
synthetic prototypes into the spk-means procedure. Note that spk-means is a special case of k-sp
where the cluster centroids are used as reference prototypes and no feature selection is applied.
By using synthetic prototypes the k-sp procedure aims to discover dynamically a different feature
subspace in which each document class can be better separated but, at the same time as we
explain, to mitigate the negative effects of the self-similarity and the feature over-aggregation
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phenomena. The explicit feature selection scheme we have considered is the simple thresholding
on the feature weights of a reference prototype to keep the P most significant features of a cluster
(see Section 3.3). Contrary to the typical preprocessing feature selection techniques, k-sp does
not affect the original data objects and hence, does not constrain future iterations with previous
cluster representations. In a later phase, one could consider much more detail (i.e. more objects
and features) from the clusters to fine-tune the solution.

A straightforward option for reference prototype is the Centroid”! of a cluster. The assump-
tion behind this choice is that many of the representative features for the dominant class in a
cluster would have high weights in the respective centroid. Thus, the feature selection on it
would keep the highly descriptive features for this class. Obviously, this is not true for a cluster
containing documents of more than one class none of which is clearly dominant (Fig. 2b).

We propose MedoidKNN™, an approach to construct the reference prototypes by computing
the centroid of a subset Y of documents assigned to a cluster that are descriptive of its dominant
class. The set Y can be formed by selecting the K documents of the cluster being the nearest
neighbors to the medoid of that cluster, including the medoid itself. As explained in Section
2.2, it would not be very efficient to directly determine a large number of nearest neighbors of a
medoid using its pairwise similarities, since the medoid document may contain only a part of the
features present in the cluster. This issue is further discussed on real world examples in Section
4.4.1. Therefore, we propose an incremental procedure to form the set Y that avoids computing
a large number of nearest neighbors directly from the medoid object. Let A be the number of
desired steps and 3;, i=1,...,1 a sequence of values such that 0<8;<B;;1<...<B,=1. Starting
with the medoid Yy={m}, each subset Y; (for i>1), is formed by the [§5;K| documents nearest to
the centroid of subset Y;_;. For a two-step example with 8,=0.2, and 8,=1, we first determine the
medoid for a cluster c¢; and then: i) we determine the [0.2K7 objects in c; nearest to the medoid
and compute their centroid rp;, ii) we locate the K objects in c; nearest to 7p; and compute rp;
which is the final MedoidKNN®. Notice that for K=n j» the rp coincides with the centroid of
cluster ¢;, while for K=1 it is the cluster medoid. Typically, up to three steps (1=3) are sufficient
to determine a proper final set Y.

One could argue that the set Y should contain the nearest documents to the cluster centroid
and not to the medoid. As a matter of fact, the medoid is close to centroid in a homogeneous
cluster and the nearest objects to medoid may also be the nearest objects to the centroid. How-
ever, if there are objects of more than one class in a cluster, the medoid-based construction of
Y is more probable to lead to a sharp preference for one of the overlapping classes (see Fig. 2).
This argument is strengthened by a usually holding property called intracluster rNN-consistency:
any data object in a cluster and its r nearest objects in the same cluster will belong to the same
class with high probability. We should remark that intracluster NN-consistency is expected to
be higher than the YNN-consistency of the whole dataset that can be similarly defined [13].

A proper synthetic prototype should cope with the two undesirable phenomena discussed in
Section 3.1. When selecting features from Centroid”: i) the role of self-similarity is degraded,
but only for objects containing features that are represented with low weight values in the cen-
troid. Since those features are eliminated, the data objects could be reassigned to another cluster.
ii) Most of the eliminated terms belong to the fj‘ set of the noisy features for the cluster which
increases its ¢-ratio and help the cluster to become more class-discriminative. When considering
the MedoidKNN®: i) the self-similarity may affect only the objects included in the Y set for each

'In cases where we need to be more specific we denote explicitly with the superscripts (r) and (s) the reference and
the synthetic prototypes, respectively.
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Figure 2: A cluster example that combines two data classes. It illustrates the rationale of using objects around the
cluster medoid to favor the representation of the dominant class A and to enable the reassignment of the objects of
the other class(es) to other clusters. (a) Object-level view of a cluster where the medoid’s nearest neighbors belong
mostly to the dominant class. (b) Feature-level view of a multidimensional cluster that illustrates the imaginary
histogram of the feature frequency for each of the classes. On the horizontal axis, we suppose an ordering where
features that exist in both class (probably noisy) lay between the two peaks of representative class features. (c) The
histogram of the cumulative feature frequency over both classes. The respective distributions are also presented
for the medoid and the MedoidKNN() cluster prototypes.

cluster and again the feature selection on the MedoidKNN® also helps some of these objects to
move to another cluster, ii) the feature over-aggregation effect is reduced since we use only the
vocabulary terms contained in a subset of core objects of a cluster.

Another advantage of k-sp method is that by ignoring some documents that are far from the
synthetic prototypes, it provides robustness and ensures that possible outlier and noisy objects
will not affect any cluster representation (similarly for noisy features). These objects are not
discarded from the dataset. Besides, one object may be ignored as a noisy-outlier at an iteration
when computing a cluster representative, while it could be later considered as one core object in
case it is reassigned to another cluster, or its current cluster changes dramatically, and the object
is now located near the new cluster medoid.

The k-sp exhibits some similarity with the soft subspace clustering methods. The object
selection of the reference prototype defines implicitly a feature subspace for a cluster while
the feature selection on it explicitly prunes this subspace. Instead of using a separate feature
weighting mechanism per cluster, which also doubles the parameters need to be estimated, k-sp
uses a heuristic way to directly determine better vector representations for the clusters. Using
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Algorithm 1 k-Synthetic Prototypes Clustering Method

function kS P (k, pdocss Prerms, ref-flag)
input: the number of clusters k, two parameters pgocs, Prerms (see Algorithm 2), a refinement flag ref_flag
output: the k clusters and the set of final prototypes
let: C, S, H, a partition, the synthetic cluster prototypes and the respective clustering cohesion
ConstructS P (C, Pdocs, Prerms) Algorithm 2 for constructing prototypes for each cluster of the partition C
Re fineS olution (C) k-sp using Centroid® prototypes (regular spk-means) initialized by the partition C
end let
{C, S} « InitializeClusters ()
H « Cohesion(C, S)
repeat
{C(prev)’ S(preV), H(preV)} —{C, S, H}
C « AssignDocsToClusters ()
S « ConstructS P(C, Pdocss Pterms)
H « Cohesion(C, S)
until C = CP"") or H < HP"®")
9: if H < H?®) then
100 {C, S, H} « {CPrev), §(prev). HIy
11: endif
12: if ref_flag == TRUE then
13: C « RefineS olution (C)
14: end if
15: return {C, S}

B A i e

object selection it actually tries to favor the representation of the dominant class in a cluster which
implicitly results in subspace cluster representation. Another worth mentioning difference is that
we claim that after having concluded to a set of synthetic representatives defined in certain feature
subspaces, then we may take into account the complete feature space to refine the clustering.

Algorithm 1 provides the pseudocode for the k-sp method that incorporates the synthetic pro-
totypes, constructed using Algorithm 2, into the spk-means algorithm. The clustering cohesion
is computed with respect to the synthetic prototypes. It must be noted that k-sp cannot guarantee
the monotonicity of convergence. In the case of Centroid”, we compute the cluster centroid as
reference prototype that maximizes the cluster cohesion @, (c;), but this optimality is lost after
filtering its features. Similarly, for MedoidKNN® prototypes, it is not possible to guarantee that
cluster cohesion will increase at all iterations and it is essential for k-sp to monitor the objective
function and to terminate the procedure if a deterioration of the overall cohesion is observed
(the condition H<H"" in Algorithm 1). In this case, the clusters of the previous iteration are
considered as the solution to the problem produced by the main k-sp procedure.

3.3. Definition of Parameters

The k-sp parameters for computing the MedoidKNN® prototype can be defined with respect
to the volume of cluster information, namely the number of cluster members #; and the distribu-
tion of feature weights aggregated in the reference prototype of a cluster. Two parameters, both
in [0, 1], must be specified by the user: pgocs, Prerms- The number of medoid neighbors K; is
computed as:

Kj = ’Vpdocs nj-‘ . (16)
Note that different number of neighbors are considered for each cluster ¢;. In what concerns
the feature selection, an option is to find the P jzfp,e,mSlV;r)H terms of highest frequency in the

reference prototype of rp; that would cost O(|VJ(.r)|). Our implementation uses a more efficient
12



Algorithm 2 Construct MedoidKNN Synthetic Prototype

function ConstructS P (¢, Pdocss Prerms> 4> 3)
input: a cluster ¢, a threshold pg,.5€[0, 1] that determines the number of documents used for reference prototype
construction, py..ms€[0, 1] for feature selection on it, the number of steps A, and a vector S of length A that
control the incremental construction (see Section 3.2)
output: the synthetic prototype MedoidKNN® for cluster ¢
let: 7. the number of documents in cluster ¢
NNDocs (c, rp, r) determines the r nearest documents to rp vector in cluster ¢
Centroid (Y.) computes the centroid of a set Y,
FSonRP (rp, prerms) applies feature selection on the reference prototype rp based on the parameter pyepms
and normalizes the final prototype to unit length (Ly-norm)
end let
Y. « {Medoid(c)}
rp < Medoid(c)
Ke < [Pdocs nel
if K. > 1 then
do for i=1,....,1
Y. & NNDocs (c, rp, [BiK:1)
rp « Centroid (Y.)
end for
end if
sp < FSonRP (rp, prerms)
return {sp}

TYRIDINAE LN
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approach which is to select the highest weighted features (including the id f component) that
contain a fraction py,.,s of the total feature weight sum Z,-Vzl rpji (total information) of the ref-
erence prototype vector rp;. Let y(i), i=1,..., P;, a function that indexes the selected features
which represent the specified p;r,s information fraction, then P; is described by:

P,
2y Pyt
llVT = Pterms- (17)
i

Z,:l rpji

. (G
Py <V

The more uniform the weight distribution of rp;, the more features are selected to represent the
¢j cluster. Typically, the cost of this operation is O(IV;’)I log(IVE’)I)), due to the need of weight

ordering. However, this can be reduced to O(IVE’)I + zlogz) by splitting the range of feature
weight values of a cluster into several intervals (bins), where only a small number of features z
contained in one bin may be needed to be ordered and then to select the most informative subset
out of them.

3.4. Refining the Solution of k-Synthetic Prototypes

The robustness of the proposed k-sp method is the result of its ability to overcome adverse
situations in initial clustering iterations and hence to avoid poor locally optimal solutions. After
the termination of the basic procedure of k-sp method, the result may be further refined by
considering the centroids of the obtained clusters as the initial prototypes for a final run of k-sp
that now coincides with the regular spk-means (this option is enabled by the flag ref_flag in
Algorithm 1). This refinement strategy i) aims to improve the result of k-sp method by using
more detailed information for homogeneous clusters already produced by the basic k-sp phase,
ii) assists in reducing the sensitivity of the k-sp to parameter definition K and P (see Section 4),
and iii) constitutes a straightforward approach to choose the best clustering solution among those
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obtained for different k-sp parameter settings by comparing the values of the objective function
after the refinement step. This procedure is described in the next section.

The experimentally observed improvement achieved by refinement supports our basic as-
sumption that centroids do not provide sufficient flexibility when clusters are not homogeneous
and object reassignments should be encouraged. To tackle this problem one could try to im-
prove the initialization of an iterative method with specialized object-based seeding techniques,
or using the clusters produced by a clustering method of different characteristics as the initial par-
tition. Interestingly, the k-sp method is self-refined by simply using different values for method
parameters, since spk-means is a special k-sp case. The clustering improvement achieved by k-
sp refinement phase also confirms that self-similarity and feature over-aggregation play a crucial
negative role mostly due the clusters’ impurity at the initial iterations of the search procedure.
The clusters obtained by the basic phase of k-sp need only a few refining reassignments, thus
the self-similarity phenomenon is not a very important issue. Moreover, each respective cluster
centroid would have a high ¢-ratio (Eq. 15) that enables the fine-tuning of its |V| feature weights
which would lead to an improvement in its class-discrimination.

3.5. Selecting the k-sp parameters

An additional advantage of the refinement phase of k-sp, which uses the centroids as cluster
prototypes, is that it enables the direct comparison of the results obtained using different values
for k-sp parameters. The latter is a very important aspect of k-sp, since it allows the selection of
the best setting for parameters pg,cs and py..ns. More specifically, the user could specify two sets
of candidate parameter values, the set S, = for pg,, and the set § for prerms. Then, using
the same random initial conditions, k-sp runs several times for each combination of the two
parameter values and by monitoring the average value of the refined objective function (Eq. 5),
we can determine which parameter values provide the best average performance. The procedure
can be summarized by the following steps:

Prerms

1. The sets of values S,  and S are specified by the user.

Pterms

2. Run k-sp with refinement (Algorithm 1) several times for each combination of parameter

values pyoes€S and preyms€S

Pdocs Prerms *

3. Compare the average value of the refined objective function of each set to determine the
best k-sp average performance and the corresponding parameter values.

Furthermore, the above procedure may reveal important information about the dataset char-
acteristics. As we will see in the experimental section, the observation of better performance
provided by smaller synthetic prototypes may indicate that the data clusters are overlapping in
many dimensions (i.e. vocabulary terms in common), or that there are a lot of noisy objects/terms.

3.6. Implementation and Complexity

In the present context, where document vectors and cluster centroids are normalized with
respect to Lp-norm, it is easy to show that the medoid of a cluster is the cluster object with max-
imum cosine similarity (dot product) to the centroid of that cluster. Let u;=3 .. di / ”Zdiecjd,-”z
the normalized centroid of cluster c¢; with respect to L-norm, then Eq. 4 can be expressed as:

pa{ Q) = opa{ ) a9

i€cj
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Hence we can determine the medoids of all clusters with linear cost O(N) to the size of the corpus.
Thus, both ‘spherical’ version of k-medoids and k-means method have the same asymptotic cost.
It must be noted that it is possible for a cluster to have more than one ‘medoid’, i.e. objects whose
total similarity to the other cluster objects has exactly the same maximum value. Moreover, those
objects are equally distant to the cluster centroid. None of them can be considered superior to
the others, hence, we can randomly select any of them to construct our synthetic prototype.

Suppose we are given for every object d an ordered list containing the other N—1 objects
in descending order with respect to their similarity to d. Then it is possible to determine the
K—1 objects in a cluster that are nearest to its medoid by linearly traversing the respective list
(K—-1<N). By taking advantage of the intracluster YNN-consistency property, we can precom-
pute off-line a number of K, (K—1<K,,,<N) nearest neighbors for each document in the dataset.
If a list has less than K—1 objects that are assigned to the same cluster with the medoid object
d, we have to necessarily apply greedy search in cluster to locate the rest nearest neighbors to d,
up to the desired K—1. Supposing that we have set a proper K,,, value that eliminates the previ-
ously mentioned greedy search, then the non-incremental (1=1) construction of a MedoidKNN®
prototype costs O(n;+K,,,+K |V]). This includes the cost: i) to determine the medoid document:
O(n;), ii) to locate medoid’s K—1 nearest neighbors in the cluster: O(K,,), and iii) to compute the
centroid of the K objects: O(K |V]). The latter is the first step of the incremental MedoidKNN"
construction (1>1). For the steps other than the first we have to seek the nearest documents
to the partial centroid (synthetic prototype) computed so far. For the j-th cluster, this can be
done by computing and then sorting the pairwise similarities between the n?) data objects and
its synthetic prototype in step i, where i=2,...,A. Thus, if a subset of K cluster objects are
used to construct the MedoidKNN" for cluster c; at step 7>1, then the construction complexity is
O(ny)IV| + n(ji)log(n;i)) + KO|V)).

4. Experimental Evaluation

4.1. Clustering Methods

To provide a comparison of k-sp performance to other clustering methods, we implemented
spk-means, k-medoids, hierarchical agglomerative clustering (HAC), and spectral clustering.
HAC has been extensively tested on text data [23], herein we have used the average-link cluster
merging criterion based on the cosine similarity [24]. In addition, we compare k-sp with feature
weighting k-means (fwk-means) [39] and entropy weighting k-means (ewk-means) [31] which,
according to the comparative result in the latter work, performs better than a series of other soft
and hard subspace clustering methods. It is noteworthy that these two methods use the Euclidean
distance measure instead of the cosine similarity, whereas for normalized document vectors with
respect to the L,-norm, euclidean and cosine measures determine the same proximity ordering
between data objects. The parameters & and 7y, respectively, were both set to 1.5 for all datasets.
This value was used as well in [39] to apply fwk-means on the 20-Newsgroups dataset that we
also use in our experiments. In addition, in [33] it is also reported ewk-means to perform well on
the same dataset with y=1.5. Besides, it is also illustrated that ewk-means is not sensitive to the
setting of y value. Actually, we conducted a number of preliminary tests for these algorithms us-
ing parameter values within a wide range, but the observed differences in clustering performance
was insignificant.

The spk-means [22] is the baseline approach, the same algorithm is also utilized to refine
the solution produced by HAC and k-medoids. In order to show that in the HDS feature space
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Table 1: Datasets used in the experimental evaluation

Dataset || Source Docs/Topic Classes Docs Class |V| consistency OS CS
Balance INN 10NN
Talks 20-NGs: guns, mideast, religion.misc 3 900 1.0 7051 .952 .854 98.8 98.2
RSY) || 20-NGs: autos, motorcycles, crypt, 4 800 1.0 3451 853 .694 98.5 972
RS™M electronics 1600 1.0 7818 .939 .807 99.3 98.7
RSiL) 3928 980 12708 .963 .872 99.6 99.2
M) 20-NGs: p.hardware, autos, baseball, 6 1200 1.0 7154 885 .767 99.3 982
M?M) hockey, electronics, med 3000 1.0 12082 .932 816 99.6 98.9
ME“ 5891 .980 17955 .953 .862 99.7 99.2
M 20-NGs: atheism(50,795), hockey(100,989), 8 600 .500 4350 .767 .578 98.9 96.9
M§M) windows.x(100,959), forsale(100,957), 2000 1.0 9608 .824 .690 99.4 98.4
MgL) electronics(100,975), politics.misc(100,770) 7355 780 20592 912 783 99.7 99.2
mac.hardware(50,955), graphics(50,955)
NGy 20-NGs: comp.*, rec.*, sci. *, talk.* 4 12000 985 31498 .954 877 99.8 99.6
Miniyo || 20-NGs: from all of the 20 newsgroups 20 1870 970 10463 .666 494 99.4 97.5
Wapoo WebACE 20 1560 .015 8460 .696 .636 98.6 95.8
Klg ‘WebACE 6 2340 .043 13879 .954 909 99.1 98.1
Revs TREC 5 4069 .043 23220 .878 .834 99.2 98.
A Artificial 4 4000 1.0 9401 .95 916 99.7 99.5
AD dataset 4000 1.0 9461 922 875 99.7 99.5
AD generator 4000 1.0 9437 849 792 99.6 99.5
Ai‘” 4000 1.0 9469 .693 .630 99.6 99.3

marginal clustering improvement should be expected by the careful selection of objects as initial
seeds for spk-means, since as explained single objects are inappropriate for representing groups
of many objects, some spk-means initialization techniques were also tested: i) the random clus-
ters where each object is randomly assigned to one cluster, ii) the Forgy’s approach were k
objects are randomly selected as cluster centroids, and iii) the effective k-means++ method [41]
that try to spread the initial centroids away from each other.

Spectral clustering is based on spectral analysis of the similarity matrix of the dataset. We
have used the standard algorithm described in [25]. The basic idea is to project the data in the sub-
space spanned by the k largest eigenvectors of the Laplacian matrix L, which is computed from
the similarity matrix AY*") of pairwise document similarities. The similarity matrix A is com-
puted using the cosine similarity measure. The Laplacian matrix is computed as L=D~"/?AD~1/2,
where D is a diagonal matrix with D,-,-:Z?/: JA;j the sum of i-th row of similarities. To solve for

k clusters, the algorithm proceeds with the construction of a matrix XM= {x; :i=1,... k}
whose columns correspond to the k largest eigenvectors of L. X is then normalized so that each
row has unit length in Euclidean space, let Z"*® be the obtained normalized matrix. Finally, the
clustering procedure takes place in the embedding space, i.e. the rows of Z are clustered using
the standard k-means algorithm, assuming that i-th row of Z represents the i-th document.
Generally, the proposed k-sp variants are denoted by the respective synthetic prototypes
they consider, e.g. Centroid-P(prems), MedoidK(paocsINN-P(perms)>. The set of values con-
sidered for pg,.s are: S,, ={.90,.80,.60, .40}, and for p;pms: S ={.98, .95, .90, .80, .60, .40}.

Pdocs — Prerms —

2MedoidK(-)NN is also denoted as K(-)NN for brevity
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In all cases, MedoidKNN®) has been constructed incrementally in three steps (1=3) with 8;=0.2,
£.=0.6, B3=1 (see Section 3.2). In Table 2, we provide the percentage of the original features
retained after computing various synthetic prototypes for a specific cluster example to provide a
notion of the feature selection that is caused by object selection in a HDS feature space.

4.2. Datasets

4.2.1. Real Data

In order to conduct controlled experiments with respect to the corpus size, cluster sizes and
overlap, both real and artificial datasets were used (see Table 1). We constructed a series of
clustering problems from real collections, by first selecting certain topics from a collection and
then by producing different instances of these problems. In particular, we considered several
subsets of the popular 20-Newsgroups® collection using as ground truth the provided class label
of each document. As an example, MY ), M(ﬁM), M(6L) are three datasets generated from same
topics but with increasing cluster sizes: small, medium, and large that includes all the documents
of the selected topics. Miniy* contains 100 documents from each one of the twenty newsgroups,
while NGy is a subset containing all the four largest subjects in collection, namely computer,
records, science and talk. Moreover, we used three datasets from the Cluto packagesz K1g and
Wap, are from the WebACE project and contain web pages from different directories of Yahoo!,
RevS5 is derived from the San Jose Mercury newspaper articles that are distributed as part of the
TREC collection (TIPSTER Vol. 3).

In brief, in the preprocessing of each dataset, we eliminated trivial terms (stopwords), headers
and special tags, we applied Porter’s stemming transformation [15] and document frequency
thresholding (DF) [17] to discard terms that appear in only one document (df7=1). Thus, all rare
terms that have high discriminating power were maintained. Finally, we used only documents
having more than five terms. In Table 1, we report for each dataset the balance of class sizes,
the INN and 10NN-consistency (leave one out classification accuracy), the overall sparsity (OS)
of each dataset which is the average number of zero dimensions that a data vector presents, and
the sparsity of each class (CS) when considering only the vocabulary used by the class members
(note that OS > CS). We also report for the datasets we constructed the number of documents
per class that were used in cases of sensible imbalance of class sizes (Docs/Topic).

4.2.2. Artificial Data

In order to construct the artificial text collections we implemented a corpus generator. To
generate a corpus with & clusters, our algorithm assumes that the terms (the feature space) are
partitioned into k+1 disjoint topic vocabulary bags. Each bag B;, i=1,...,k contains the terms
related to i-th topic, while an additional bag By, contains general terms that could be used in the
documents of any cluster.

Each text document is considered to be a sequence of terms and each term of a sequence
is generated in two steps: 1) selecting a vocabulary bag, and then 2) selecting a term from that
bag. The correlation between a data cluster and the vocabulary bags is user-defined in a kx(k+1)
matrix W, where each element W}, is the probability of selecting the bag B; when producing a
term for a document of the j-th cluster. To sample a term from an already selected bag (step

3 Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/
4 Available at: http://kdd.ics.uci.edu/databases/20newsgroups/
5 Available at: http://www.cs.umn.edu/~karypis/cluto
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2) we used the Zanette-Montemurro stochastic process (ZM) [32] that has been proposed for
generating a single long artificial text that has similar statistical characteristics to real texts, such
as the Zipf’s power law [16] of term frequencies and the sublinear increase of the vocabulary size
as the text becomes longer. To achieve these goals the ZM process considers a time decreasing
probability controlled by a parameter v of inserting a previously unseen term in the text, i.e. p; =
a-t'~'. Otherwise an already selected term of a bag is reselected with a probability proportional
to the number of times that has already been used in the created sequence. This property of the
process (called ‘memory’) permits high frequencies for some terms, while the majority of terms
present low frequency. In our algorithm, the generation of documents is conducted in cluster
order, i.e. the documents of the first cluster then that of the second etc. The memory of the
general bag By, is maintained during the whole procedure, but the memory of all the other bags
is reset when starting the generation of the documents of a new cluster. Using this strategy, in
the documents of each cluster a (generally) different set of terms from all the bags would present
high frequencies.

To demonstrate the superiority of k-sp performance under situations of clusters that overlap
in many dimensions we constructed four artificial datasets called Aff), i=1,...,4 using the above
algorithm. All datasets have four clusters (k=4), each of them containing 1000 documents and
five topic vocabulary bags were considered with 2000 terms each. The datasets exhibit increasing
cluster overlap (from Ail) to Af)), by lowering the probabilities Wj; (i=1,...,4) and increasing
the probabilities W;; (j#i) of selecting a term from the rest of the bags. The probability matrices
W are presented in Fig. 5 (the fifth bag contains the general vocabulary). The length of each
document was randomly set by an exponential distribution with mean value A.,,=1/100. The
parameter values that we used for the ZM process are @=0.3 and v=0.9.

4.3. Cluster Evaluation Measures

Since we are given the ground truth labeling of the documents in all datasets, clustering
evaluation is based on the two popular supervised measures Normalized Mutual Information
(NMI) and Purity. At this point, we denote: C the clustering solution of k clusters, ¢y, ..., ct, C¥
the grouping based on ground truth document labels c(lL), cees cECL) (true classes), N the number of
documents in a dataset, N; the size of cEL), n; the size of c;, and n;; the number of documents

belonging to cEL) that are clustered in ¢;. Let us further denote the probabilities p(c;)=n;/N,
p(cEL)):nfL) /N, and p(cEL),c )=n;j/N. The [0, 1]-Normalized MI measure, as used in [26], is
computed by dividing the MI by the maximum between the cluster and class entropy:

(L) p(CEL)s cj)
e, P(ci€;7) 108y —F——
e Pe)p(e))

NMI(CP,C) = max {H(CD), H(C))

19)

When C and C? are independent the value of NMI equals to zero, and to one if these groups
contain identical clusters.

The Purity of a cluster can be interpreted as the classification accuracy by assuming that all
objects of a cluster are assigned to its dominant class. The clustering Purity is the weighted
average of cluster-wise purity:

k
Purity(C) = %Z max {n;;} (20)
j=1
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Figure 3: The decrease of average similarity between different types of cluster prototypes and the nearest objects
around them as the number of neighbors increase. The datasets consist of objects belonging to a dominant class
and two other classes corresponding to noise. We considered three percentages for the objects of the noisy classes:
(a) a pure dataset (0%), (b) 25%, and (c) 40%. MedoidK(.6)NN-nincr denotes the reference prototype constructed
non-incrementally using the 60% of the objects of each dataset.

Generally, we seek to find a clustering solution that maximizes both NMI and Purity to val-
ues close to unit. For each dataset and method we report the values of these indexes. For the
methods depending on initialization we also report the average value of each index over the runs
on a dataset, while we also report (denoted as ‘best’) the value of each index (NMI or purity)
corresponding to the solution with the highest clustering objective function ®,;, among the 50
runs.
Moreover, in order to evaluate a method’s behavior during iterations, we introduce the Q-
index:
0/ =1-

s

(C)/(I)(.’_l)(C), t>0, 1)

ics

where (I)g?J (C) is the intracluster similarity measure defined as the sum of pairwise cosine simi-
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Table 2: The percentage of features retained in the synthetic cluster prototypes for a cluster containing 300 docu-
ments from the first topic of Talk; dataset. The centroid contains all the 4264 non-zero dimensions of the cluster.

Reference Dierms

Prototype 1.0 .98 | 95 | .90 | .80 | .60 |.40
Centroid 100 840 725 593 420 215 9.8
Medoid 4.6 -

MedoidK(.9)NN (| 98.0 822 71.1 58.0 40.8 20.7 94
MedoidK(.8)NN || 95.7 80.6 69.5 56.7 39.6 20.0 9.1
MedoidK(.6)NN || 89.5 75.8 654 53.1 36.7 185 85
MedoidK(.4)NN || 76.7 65.5 56.4 458 319 162 73

larities between objects in the same cluster at iteration #:

k
LECED) r=nPIPIE AL 2)

di€c; d,ecj, i<j

where n; the size of cluster ¢;. Initially, we assume that Qp=0 holds. Higher values of Q-index
indicate greater relative improvement of the clustering quality after one iteration.

Finally, the statistical t-test was applied to estimate the significance of the average perfor-
mance difference between k-sp and the methods under comparison for each dataset, except for
HAC that is deterministic. Within a confidence interval of 95% and for the value of degrees of
freedom equal to 2-number_of-runs—2 we can test if our method is significantly superior, other-
wise the null hypothesis is accepted.

4.4. Experimental Results
4.4.1. Robust Cluster Representation

Our first intention in the experiments is to demonstrate the robustness and effectiveness of
synthetic prototypes in favoring the representation of the dominant class in a cluster that con-
tains documents from more than one class. To this end we constructed three sets of documents
from the topics of Talks dataset: a) a pure set of 300 documents from the first topic (0% noisy
objects), b) the previous set along with 50 documents from each of the other two topics (25%
noisy objects), ¢) a set of 300, 130, and 70 documents from each topic (40% noisy objects). In
all three cases the medoid of the complete dataset belongs to the dominant class (i.e. the first
topic). Fig. 3 demonstrates the decrease of average similarity between different types of cluster
prototypes considered for the above cases and the nearest objects around them as the number
of neighbors increase. We can observe the high average similarity of the medoid with its very
close neighbors that decreases rapidly as we consider wider neighborhoods. This indicates that
the medoid exhibits high intracluster YNN-consistency (see Section 3.2) and empirically explains
why the medoid-based construction of synthetic prototype is more class-discriminative than the
centroid-based. The result is the higher average similarity to the members of the dominant class,
and the lower similarity values to the documents of other classes (considered as noisy). Further-
more, the incremental construction of MedoidKNN performs better than the direct construction
based on the K nearest neighbors of the medoid. Table 2 reports the percentage of features that
have non-zero weights after the implicit (i.e. features retained in the reference prototype) and ex-
plicit (i.e. additional feature selection on reference prototype) feature selection. We can see the
extent to which synthetic prototypes can summarize the characteristics of the document clusters,
as well as that synthetic prototypes can discover feature subspaces to represent data clusters.
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Table 3: Clustering results on the M(GS) dataset using k-sp variants.

Reference NMI Purity

Prototype Drerms || avg. best | avg. best | 1t
Centroid 1.0 || .480 .564 | .630 .751 | 17.1
Centroid 0.8 || .484 .644 | .632 798 | 16.1
Centroid 0.4 || .528 .679 | .655 .807 | 16.3
Medoid 1.0 || .286 .424 | .504 .648 | 2.5
MedoidK(.4)NN 1.0 || .564 .681 | .688 .833 | 6.9
MedoidK(.8)NN 1.0 || .686 .792 | .777 .899 | 13.9
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Figure 4: The evolution of the average Q-index with clustering iterations for 50
randomly initialized runs using the M(GS) dataset.

In another experiment we intend to demonstrate the robustness of k-sp under adverse initial
conditions. We considered the Més) dataset and examined the case where clusters are initialized
by randomly assigning each document to a cluster. Table 3 reports the average and best values
of the evaluation measures, and the average number of iterations until convergence (7) for 50 ran-
dom restarts without refinement. Fig. 4 illustrates how the average Q-index value evolves with
iterations for each method. An efficient approach should maximize the area under its correspond-
ing curve, either by executing many iterations or by making larger improvements in shorter time.
Fig. 4 indicates the weakness of centroid representation: it defines an optimal cluster representa-
tive assuming that all its documents should stay in that cluster. This constrains to a great extent
the representation flexibility and forces the procedure to reach poor locally optimal solutions not
far from the bad initial clusters. As k-sp becomes more selective on the cluster’s features, as in
the case of Centroids”’ (e.g. with P(.4)), we observe immediate clustering improvement in the
first iterations. However, the main problem remains: the features are selected from the centroids
of impure clusters. Despite the fact that medoids lead to a major initial improvement related
to a sharper preference to represent one class out of many others in a cluster, subsequently, the
procedure converges too early (2.5 iterations on average). On the other hand, the k-sp with
MedoidK(.8)NN is a more balanced choice that combines efficiently the advantages of keeping a
compact cluster representation and that of considering a wider set of objects around medoid for
computing cluster representatives.

4.4.2. Clustering Performance Results

In this section, we provide experimental results using the procedure described in Section 3.5
for the datasets of Table 1 for the two sets of values S, and S, mentioned in Section 4.1. The
results are displayed using the line-plots presented in Fig. 5, 6, 7. The reported ‘refined’ solutions
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Figure 5: Experimental results on four artificial datasets of increasing cluster overlap, from Ail) to Aff), where the
line-plots indicate the solutions of k-sp method with different parameter values. The respective results for the refined
solutions are also reported.

are obtained by k-sp refinement phase using centroids as cluster prototypes (see Section 3.4)
on the final clusters of each of the 50 runs of basic k-sp. The bar-graphs in each row of plots
present the results for spk-means initialized with the k-means++ heuristic (Spkm++), k-medoids
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Figure 6: Experimental results for instances of the RS4 and Mg problems with different cluster sizes.

(Medoid), the refined k-medoids (Med-ref), HAC, refined HAC (HAC-ref) using spk-means, and
finally the spectral clustering method.

The results on artificial datasets are presented in Fig. 5. For a dataset of small cluster overlap,
such as the Aftl) , the performance of k-sp and spectral clustering are quite similar. However, in
a more confused setting, such as the Af ) and Af) datasets the superiority of k-sp becomes more
clear. Moreover, as the overlap between clusters increases, k-sp performs significantly better
than the other methods even with lower values of py,.s parameter (e.g. 0.6 or 0.4) where the best
result is closer to the average performance of the method.

The results on real datasets that are displayed in Fig. 6 and 7 support as well the main idea
of this paper. In all cases the k-sp method produced much better results than spk-means. Using
MedoidKNN® prototypes, the best results for larger datasets are obtained for the K(.9)NN and
K(.8)NN cases. Especially for the experiments where we considered three instances of the same
problem with increasing size of clusters from small to large (datasets RSy, Mg, and My), it is
clear that k-sp using synthetic prototypes manages to overcome the issues arising in the case of
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Figure 7: Experimental results for instances of the Mg problem with different cluster sizes, Talks, Miniyg and NGy
datasets.

small datasets where the number of objects per cluster is not sufficient, such as self-similarity
and feature over-aggregation. The proposed refinement phase leads to even better results, while
reducing the sensitivity of setting improper values for k-sp parameters. All the experimentally
compared clustering methods performed better when more data objects became available for a
specific problem, but the proposed k-sp remained the best among them.

By observing both curves of average and best values of the evaluation measures, we can
realize the trade-off in setting k-sp parameters. When limiting the size of synthetic prototypes, k-
sp avoids the bad solutions and produces much better clusterings. On the other hand, as synthetic
prototypes discard too much information ‘detail’ from clusters, the basic k-sp procedure becomes
unable to identify the fine differences between data classes. This explains the sudden drop of the
performance of K(.6) and K(.4) synthetic prototypes for medium and large datasets (e.g. RSiM),
RS;L), RS;M), RSE‘L), M(6M), M(6L), and M(SL)) when no refinement is applied. The information of
the formed clusters can be further exploited by larger synthetic representatives in the refinement
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Table 4: The NMI, Purity measures for the refined solutions found for each dataset. Bold values indicate the best result per column. The underlined ¢-values denote the
cases where according to the statistical t-test k-sp appears not to be significantly better (0<z-val<1.999), or appears to be worse than the compared method (z-val<0).
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A — k-sp: KNN(.90)-P(.98) AP — k-sp: KNN(.90)-P(1.0) AT — k-sp: KNN(.80)-P(.98) AT — k-sp: KNN(.60)-P(.98)
NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val [ avg best t-val | avg best t-val [ avg best t-val | avg best t-val [ avg best t-val | avg best t-val [ avg best t-val
k-sp 901 914 968 .978 .866 .880 960 .968 756 774 916 .930 433 527 740 .816
Centroid-P(.6) || .803 .846 06.46 917 .958 03.49 | .714 .801 07.25 .866 .941 05.10 | .483 .665 11.84 .730 .886 08.89 | .056 .193 25.05 .376 .518 24.29
spk-means 785 .832 07.51 909 .950 11.66 | .674 775 09.12 .847 .928 06.48 | .394 .626 16.00 .668 .868 12.07 | .042 .176 26.34 .357 .512 25.94
spk-means++ || .768 .843 07.81 .894 .955 04.55 | .692 .779 08.63 .860 .933 05.77 | .416 .624 13.98 .691 .862 10.37 | .038 .157 27.05 .350 .491 27.19
Medoid-ref 784 .843 08.08 911 .955 04.11 | .699 .769 08.97 .868 .930 05.86 | .423 .628 14.52 .690 .865 10.72 | .055 .176 24.96 .373 512 24.18
fwk-means .051 .262 80.48 .366 .574 58.60 | .289 .160 97.58 .334 .311 81.48 | .016 .032 99.83 .314 .360 81.96 | .006 .007 30.38 .286 .290 34.75
ewk-means 131 .302 43.50 400 .460 34.62 | .073 274 63.02 .372 .540 45.02 | .032 .003 57.87 .336 .266 64.44 | .009 .006 30.10 .296 .283 33.50
HAC-ref .851 936 .802 936 450 659 156 418
Spectral .850 .869 04.86 .942 .965 02.15 | .849 .869 02.05 .941 .965 02.47 | .738 .763 02.41 .891 .926 02.55 | .021 .021 29.01 .230 .305 32.84
RSY) — k-sp: KNN(.80)-P(.95) RS{” — k-sp: KNN(.80)-P(1.0) RS{” — k-sp: KNN(.90)-P(.80) Talk; — k-sp: KNN(.80)-P(1.0)
NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val [ avg best t-val | avg best t-val [ avg best t-val | avg best t-val [ avg best t-val | avg best t-val [ avg best t-val
k-sp .529 .689 760 .875 738 .773 900 .926 771 .798 916 .935 587 .762 816 935
Centroid-P(.6) || .277 .383 14.92 .565 .695 11.65 | .625 .737 06.65 .813 .910 05.12 | .691 .786 05.23 .851 .931 04.12 | 431 .657 05.78 .728 .900 04.23
spk-means 226 .307 17.97 532 .605 13.78 | .598 .706 07.93 .798 .892 05.80 | .677 .766 07.18 .838 .921 04.79 | .401 .540 06.97 .715 .875 04.88
spk-means++ || .209 .343 18.35 .508 .623 15.08 | .606 .723 08.11 .801 .899 05.97 | .700 .778 04.54 .864 .926 03.36 | .400 .588 06.68 .717 .823 04.54
Medoid-ref 285 427 15.59 550 .675 13.77 | .535 .682 12.91 .730 .876 10.88 | .669 .781 06.59 .823 .929 05.50 | .468 .617 04.58 .751 .916 03.34
fwk-means .095 .153 27.86 420 .493 21.57 | .116 .196 53.89 .448 .548 37.55 | .140 .257 56.67 .470 .610 39.73 | .082 .119 24.20 .510 .551 17.77
ewk-means 134 219 24.34 457 498 18.86 | .219 .357 39.59 .519 .619 29.64 | .248 .020 23.85 .499 .288 21.76 | .174 .197 17.52 .589 .689 11.90
HAC-ref .022 285 533 .680 489 492 480 734
Spectral 453 413 04.99 .647 .628 07.91 | 725 740 01.19 .896 .913 00.34 | .747 .754 02.77 911 919 00.53 | .504 .533 04.18 .785 .790 02.05
M®” - k-sp: KNN(.80)-P(.95) MU — k-sp: KNN(.90)-P(1.0) MY — k-sp: KNN(.90)-P(.98) Wap,o — k-sp: KNN(.80)-P(1.0)
NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val [ avg best t-val | avg best t-val [ avg best t-val | avg best t-val [ avg best t-val | avg best t-val [ avg best t-val
k-sp 711 .798 808 .904 741 .807 .835 .907 761 .799 .861 .905 592 622 .658 .696
Centroid-P(.6) || .552 .657 13.12 .670 .814 09.57 | .667 .768 05.86 .755 .880 04.97 | .693 .780 06.36 .773 .893 06.31 | .556 .574 07.56 .621 .637 06.38
spk-means 510 .644 17.05  .647 .803 11.56 | .648 741 07.36 .742 .870 12.87 | .689 .782 06.85 .769 .895 06.74 | .538 .544 11.35 .609 .624 08.48
spk-means++ || .509 .673 15.85 .641 .831 11.34 | .647 750 07.77 .743 .876 06.12 | .698 .785 06.27 .783 .899 05.92 | .545 547 11.15 .616 .609 08.00
Medoid-ref 527 622 1430 .648 .759 10.55 | .660 .751 06.28 .753 .876 05.00 | .701 .784 05.86 .781 .887 06.17 | .548 .576 11.08 .628 .643 06.06
fwk-means 133 186 54.59 372 .443 37.00 | .148 .188 53.78 .390 .440 36.52 | .160 .241 75.31 .398 .484 51.23 | 369 .357 45.34 .486 .487 31.71
ewk-means 245 313 49.58 456 .475 33.78 | .323 .295 40.21 .470 .377 29.86 | .352 .097 54.27 461 271 39.68 | .439 433 09.37 .531 .535 08.52
HAC-ref 489 492 647 .648 709 793 527 573
Spectral .652 .659 06.76 726 754 07.03 | .662 .649 08.33 .754 .729 06.34 | .690 .720 09.37 771 .821 08.52 | .596 .602-1.21 .664 .665 -1.43
MY — k-sp: KNN(.60)-P(.98) M7 — k-sp: KNN(.90)-P(1.0) M — k-sp: KNN(.90)-P(.98) Revs — k-sp: KNN(.80)-P(1.0)
NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val [ avg best t-val | avg best t-val [ avg best t-val | avg best t-val [ avg best t-val | avg best t-val [ avg best t-val
k-sp 615 .642 706 .738 .692 .796 786 .904 786 .839 .854 .928 577 .676 767 .833
Centroid-P(.6) || .331 .459 28.81 .511 .582 19.59 | .610 .709 08.92 .704 .839 07.45 | .734 .828 05.22 .795 919 04.44 | .542 .659 02.67 .745 .828 02.26
spk-means 275 367 33.20 473 .528 23.71 | 578 .667 12.14 .688 .812 08.88 | .733 .826 05.33 .791 919 04.74 | .535 .651 02.41 .733 .822 02.31
spk-means++ || .261 .361 40.56 .450 .537 30.60 | .517 .619 20.07 .610 .735 15.66 | .622 .661 31.82 .711 .751 20.85 | .540 .663 02.42 .739 .819 02.18
Medoid-ref 332 445 27.61 510 .635 18.99 | .565 .697 14.13 .668 .833 10.45 | .733 .817 05.75 .788 911 05.14 | .526 .653 03.00 .717 .819 03.33
fwk-means 152 .197 56.08 360 .400 39.85 | .145 .195 59.75 .340 .420 40.94 | .156 .246 72.02 .353 .473 45.20 | .234 367 20.82 .566 .700 15.16
ewk-means .188 288 49.45 400 .442 35.13 | 281 .279 42.86 .418 .388 32.34 | .316 .279 53.99 418 .364 36.85 | .278 .078 05.57 .561 .388 02.27
HAC-ref 302 335 .607 .640 .664 706 237 515
Spectral .615 .620 00.00 .645 .650 08.86 | .733 .733 -5.48 .817 .818 -3.24 | .741 .774 05.57 .832 .886 02.26 | .406 411 1446 .664 .671 11.95
NG, — k-sp: KNN(.90)-P(1.0) Miniy) — k-sp: KNN(.80)-P(.90) K1 — k-sp: KNN(.90)-P(1.0)
NMI Purity NMI Purity NMI Purity
Method avg best t-val | avg best t-val | avg best t-val | avg best t-val | avg best t-val | avg best t-val
k-sp 547 .607 734 799 557 597 .546 .603 7701 .802 .834 .897
Centroid-P(.6) || .510 .561 02.62 .702 .751 02.31 | .459 .501 12.59  .442 .484 18.73 | .690 .785 01.00 .837 .887 00.37
spk-means 507 548 0273 .699 748 02.45 | 420 .454 30.07 418 455 2224 | .675 .725 02.52 .831 .838 01.59
spk-means++ || .506 .568 02.70 .696 .755 02.69 | .422 451 30.81  .425 .446 21.99 | .680 .770 02.09 .833 .883 01.30
Medoid-ref 492 568 03.66 .694 756 03.00 | .431 .484 2847 424 484 20.94 | .685 .767 01.59 .829 .885 01.90
fwk-means 081 .152 42.94 412 494 28.20 | .081 .152 91.60 .412 .494 64.11 | .303 .454 28.07 .715 .756 13.18
ewk-means .063 .001 27.76 .316 .253 24.93 | 286 .312 08.78 .314 .308 46.82 | .417 .537 16.36 .762 .827 08.00
HAC-ref 375 591 444 348 582 .860
Spectral 492 497 0543 711 714 02.48 | .566 .573 -04.04 .522 .539 04.66 | .741 .763 -5.16 .847 .860 -1.87




phase (where the centroids are used). Apparently, when larger synthetic prototypes are used in
the main phase, the contribution of refinement turns out to be much smaller.

Table 4 summarizes the best and average performance of each method focusing on the refined
solutions of k-sp, HAC, and k-medoids. Regarding k-sp, its refinement phase uses the complete
feature set and centroids which, as explained in Section 3.5, enables the direct comparison of
the solutions corresponding to different parameter values. The supervised evaluation measures
that are presented in Table 4 correspond to the set of experiments with the maximum average
value of the refined objective function determined by the procedure described in Section 3.5.
The k-sp setting that provided this result in each dataset is indicated near the dataset name. The
reported best refined k-sp clustering is the best solution using the latter setting of parameter val-
ues, whereas it is possible that a different parameter setting may have produced a better solution.
The column #-val presents the 7-value of the significance t-tests between the best k-sp average
performance and the average performance of the other methods. For two sets of 50 experiments
each, the critical r-value is #,=1.999 (p.=5% for p value). This means that if the computed -
value>?,, then the null hypothesis is rejected (p>5%, respectively), i.e. our method is superior,
otherwise the null hypothesis is accepted indicating a marginal improvement achieved by k-sp.
If the #-value is negative, k-sp performs worse than the compared method. In Table 4 the ¢-values
< 1.999 are underlined.

According to the significance t-tests, k-sp is clearly superior to the baseline methods such as
spk-means, spk-means initialized with the k-means++ technique, k-medoids and HAC as well
as their refined solutions using spk-means, and the soft subspace clustering methods fwk-means,
ewk-means. Compared to spectral clustering k-sp is superior in most datasets, in terms of both
NMI and Purity. Spectral clustering seems to be clearly superior only for datasets MéM) and Kle.
It is also worth mentioning that the computational complexity of spectral clustering is O(N?)
which is significantly higher than that of k-sp. It must be also emphasized that for all datasets
the best solutions were provided by the k-sp method.

4.4.3. Discussion

As a general conclusion about the experimental study, it turns out that the refined k-sp ap-
proach using medoidKNN with pg,.,=.9 or .8 seems to be the best method exhibiting superior
clustering performance as well as robustness in the case of small, or noisy datasets where the
clusters overlap in many dimensions. High values of p;.,.,s (e.g. .98 or .95) may also help in
some cases. However, we explained in Section 3.5 that the user specifies only the two sets of pa-
rameter values S ,, .S, and the best result can then be identified automatically by examining
the values of the objective function of the refined k-sp clusterings. We should also remark that
k-sp’s feature selection on reference prototypes can efficiently summarize to a great extent the
characteristics of the document clusters, since in most cases its application does not deteriorate
the clustering performance. When py,.s value is kept fixed and small number of features is con-
sidered (e.g. prrms=-6 that is expected to be about 20% of cluster’s features, see Table 2) then,
in most cases, the quality of the clusters produced using MedoidK(pge.s)NN® is comparable to
the respective results of the respective unfiltered reference prototypes. As for the Centroid®,
it is the k-sp variant that mostly profits by the prototype filtering. These findings indicate the
straightforward applicability of k-sp method to corpus summarization problems or off-line term
selection.

In both artificial and real document datasets neither the sophisticated k-means++ initializa-
tion, nor the refined k-medoids helped the spk-means to discover much better clusterings. There
are also cases where these methods perform equally or worse than typical spk-means. For the
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refined k-medoids the reason for this observation is explained in Section 3.1 and is related to the
inability of any data object to represent a large group of objects in HDS feature space. Thus, spk-
means is seeded in a little better way than Forgy’s random selection. The fact that spk-means++
and the refined k-medoids perform similarly implies that the probability introduced by the former
in order to select objects that are far from each other may not reflect their respective semantic
distance, since it does not take into account the special properties of text feature space, such as
sparsity.

An interesting remark is that the soft subspace clustering methods tested, fwk-means and
ewk-means, did not manage to provide satisfactory solutions. In Sections 2.4 and 3.1, we re-
ported as one of their disadvantages the fact that, by introducing explicit feature weights per
cluster, the parameters to be estimated are doubled. This becomes more problematic for the very
high dimensional datasets used in our experiments. It is worth mentioning that in the experi-
ments in [39] and [33] at most 2000 features were used to represent the documents of datasets
containing 2000 to 15905 objects. Apparently, this experimental setting focuses on high dimen-
sional data but of lower scale. The very large scale of dimensionality in our experiments seems
to reveal their weakness regarding the number of parameters they use. In most cases, ewk-means
presented better results to that of fwk-means with respect to the average evaluation measures.
At the same time for many datasets, e.g. Af), Af), and RSZL), the best clustering of ewk-means
is evaluated to be of lower quality than the average clustering found by the algorithm. This ob-
servation indicates that the feature weight entropy term e; introduced in Eq. 10 may dominate
the value of the objective function. We tried to lower down the y value without observing any
improvement. This implies that the feature weight entropy may not always capture the quality of
a cluster, whereas numerical issues may also arise for the entropy computation in a HDS feature
space.

5. Conclusions

In this paper we have proposed the k-synthetic prototypes (k-sp) clustering method that incor-
porates the synthetic prototypes into the spherical k-means (spk-means) procedure for document
clustering. Through the computation of synthetic prototypes (such as MedoidKNN) cluster-
based dynamic feature selection is achieved that favors the representation of the dominant class
of a cluster and enables the reassignment of the improperly clustered documents to other clusters.
The proposed method is general, simple and effective and includes spherical k-means as a special
case. As indicated by extensive experimental results using several datasets, the method provides
robust clustering performance especially in cases of small datasets, or noisy clusters that overlap
in many dimensions, and compares favorably against spk-means (with Forgy’s and k-means++
initialization), k-medoids, HAC, spectral clustering, and the subspace clustering methods fwk-
means and ewk-means. It is remarkable that in the HDS feature spaces of the datasets we used,
state of the art soft subspace clustering methods did not manage to achieve better solutions even
than baseline methods such as spk-means.

The proposed k-sp approach exhibits similarity to subspace clustering methods, since the
introduced synthetic prototypes define different subspaces in which data classes are more distin-
guishable. Therefore, one could argue that k-sp in high dimensional and sparse spaces is also
a subspace clustering method. To clarify the differences, we remark that many of the subspace
clustering methods [39, 33, 31] construct each cluster prototype by explicitly computing weights
for each dimension using all cluster objects. On the other hand, k-sp first applies object selection
to construct a reference prototype (resulting in implicit feature selection), and then proceeds with
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optional explicit feature selection on the reference prototype. Moreover, the motivation of k-sp is
to address the self-similarity and feature over-aggregation phenomena that are very intense in the
HDS feature spaces. We have also shown that the solutions obtained from the basic k-sp phase
can be refined by the refinement k-sp phase using the whole feature set, which is in contrast with
the traditional idea of subspace clustering.

A direction for future work is to extend the feature selection procedure to a continuous
weighting scheme, instead of the current binary weighting. It is interesting to investigate the
possibility of developing a gradual adjustment of the k-sp parameters aiming to achieve a gradual
change of the prototype behavior from medoid-like to centroid-like. This would also eliminate
the separate refinement phase. We also aim to test the proposed method to other problems, such
as term selection for cluster summarization, organization of noisy document collections, on-line
document clustering, and semi-supervised document clustering [56].

References

[1] A. Schenker, M. Last, H. Bunke, A. Kandel, Clustering of Web Documents Using a Graph Model, in: A. Antona-
copoulos and J. Hu (Eds.), Web Document Analysis: Challenges and Opportunities, World Scientific Publishing
Company, 2003, pp. 3—-18.

[2] A. Kalogeratos, A. Likas, A Significance-based Graph Model for Clustering Web Documents, Proc. 4th Hellenic
Conf. on AI (SETN’06), Springer, 2006, pp. 516-519.

[3] K.M. Hammouda, M.S. Kamel, Efficient Phrase-based Document Indexing for Web-Document Clustering, IEEE
Trans. on Knowledge and Data Engineering 16:10 (2004) 1279-1296.

[4] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[5] Y. Yang, J.P. Pedersen, A Comparative Study on Feature Selection in Text Categorization, Proc. 14th Intern. Conf.
on Machine Learning, 1997, pp. 412-420, .

[6] N.M. Wanas, D.A. Said, N.H. Hegazy, N.M. Darwish, A study of global and local thresholding techniques for text
categorization, Proc. 5th Australasian Conf. on Data Mining and Anal., ACS, 2006, pp. 91-101.

[7]1 R.Xu, D. Wunsch II, Survey of Clustering Algorithms, IEEE Trans. on Neural Networks 16:3 (2005) 645-678.

[8] D.M Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet Allocation, Journal of Machine Learning Research 3 (2003)
993-1022.

[9] S.Zhong, J. Ghosh, Generative model-based document clustering: a comparative study, Knowledge and Informa-
tion Systems 8:3 (2005) 374-384.

[10] J. McQueen, Some Methods for Classification and Analysis of Multivariate Observations, Proc. 5th Berkley Sym-
posium on Mathematical Statistics and Probability, 1967, pp. 281-297.

[11] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, 1990.

[12] I. Dhillon, Y. Guan, Iterative Clustering of High Dimensional Text Data Augmented by Local Search, Proc. 2nd
IEEE Intern. Conf. on Data Mining, Mining, 2002, pp. 131-138.

[13] C.Ding, X. He, K-Nearest-Neighbor Consistency in Data Clustering: Incorporating Local Information into Global
Optimization, Proc. Symposium on Applied Computing, 2004, pp. 584-589.

[14] N. Grira, M.E. Houle, Best of Both: A Hybridized Centroid-Medoid Clustering Heuristic, Proc. 24th Intern. Conf.
on Machine Learning, 2007, pp. 313-320.

[15] M.F. Porter, An algorithm for suffix stripping, Program 14:3 (1980) 130-137.

[16] G.K.Zipf, The Psycho-biology of Language, an Introduction to Dynamic Philology, MIT Press, 1936.

[17] D.D. Lewis, Feature Selection and Feature Extraction for Text Categorization, Proc. Speech and Natural Language
Workshop, 1992, pp. 212-217.

[18] G. Salton, A. Wong, C. Yang, A Vector Space Model for Automatic Indexing, Communications of the ACM 18:11
(1975) 613-620.

[19] A. Strehl, J. Ghosh, R. Mooney, Impact of similarity measures on web-page clustering, Proc. AAAI 2000 Workshop
on Al for Web Search, 2000, pp. 58-64.

[20] J. Ghosh, A. Strehl, Similarity-Based Text Clustering: A Comparative Study, Grouping Multidimensional Data,
Springer, 2006, pp. 73-97.

[21] LS. Dhillon, J. Fan, Y. Guan, Efficient Clustering of Very Large Document Collections, R. Grossman, G. Kamath,
R. Naburu (Eds.), Data Mining for Scientific and Engineering Applications, Kluwer, 2001.

[22] LS. Dhillon, D.S. Modha, Concept Decomposition for Large Sparse Text Data using Clustering, Machine Learning
42 (2001) 143-175.

28



[23]
[24]
[25]
[26]
[27]

(28]

[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
(511

[52]

Y. Zhao, G. Karypis, Hierarchical Clustering Algorithms for Document Datasets, Data Mining and Knowledge
Discovery 10 (2005) 141-168.

M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering techniques, Proc. KDD Workshop on
Text Mining, 2000, pp. 20-23, 2000.

A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, In Advances in Neural Information
Processing Systems 14 (2001) 849-864.

D. Cai, X. He, J. Han, Document Clustering Using Locality Preserving Indexing, IEEE Trans. on Knowledge and
Data Engineering 17:12 (2005) 1624-1637.

K. Beyer, J. Goldstein, R. Ramakrisnan, U. Shaft. When is Nearest Neighbors Meaningful?, Proc. Intern. Conf. on
Database Theory (ICDT99), 1999, pp. 217-235.

A. Hinneburg, C.C. Aggarwal, D.A. Keim, What Is the Nearest Neighbor in High Dimensional Spaces?, Proc. 26th
Intern. Conf. on Very Large Data Bases (VLDBO00), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2000, pp. 506-515.

H.P. Kriegel, P. Kroger, A. Zimek, Clustering high-dimensional data: A survey on subspace clustering, pattern-
based clustering, and correlation clustering, ACM Trans. Knowledge Discovery from Data 3:1 (2009) 1-58.

D.S. Modha, W.S. Spangler, Feature Weighting in k-Means Clustering, Machine Learning 52:3 (2003) 217-237.
L. Jing, N. Liping, K. Michael, J.Z. Huang, An Entropy Weighting k-Means Algorithm for Subspace Clustering of
High-Dimensional Sparse Data, IEEE Trans. on Knowledge and Data Engineering 19:8 (2007) 1026-1041.

D.H. Zanette, M.A. Montemurro, Dynamics of Text Generation with Realistic Zipf’s Distribution, Journal of Quan-
titative Linguistics 12:1 (2005) 29-40.

C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, D. Papadopoulos, Locally adaptive metrics for
clustering high dimensional data, Data Mining and Knowledge Discovery 14:1 (2007) 63-97.

C.Y. Tsai, C.C. Chiu, Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm,
Computational Statistics & Data Analysis 52:10 (2008) 4658-4672.

J.M. Pena, J.A. Lozano, P. Larranaga, An empirical comparison of four initialization methods for the K-Means
algorithm, Pattern Recognition Letters 20:10 (1999) 1027-1040.

L. Kaufman, P.J. Rousseeuw, Finding Groups in Data. An Introduction to Cluster Analysis. John Wiley & Sons,
Inc., Canada, 1990.

J.H. Friedman, J.J. Meulman, Clustering objects on subsets of attributes, Journal of the Royal Statistical Society,
66:1 (2004) 815-849.

H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, Proc. Intern. Conf. on Very Large Data Bases
(VLDBO08), Auckland, New Zealand, 2008, pp. 90-101.

L. Jing, M.K. Ng, J. Xu, J.Z. Huang, Subspace clustering of text documents with feature weighting k-means algo-
rithm, Proc. 9th Pacific-Asia Conf. on Knowl. Disc. and Data Mining (PAKDDOS), Vietnam, 2005, pp. 802-812.
H.S. Heap, Information Retrieval: Computational and Theoretical Aspects, Academic Press, Orlando, USA, 1978.
1.S. Dhillon and Y.Guan and J. Kogan, Refining clusters in high-dimensional text data, Proc. Workshop on Cluste-
ring High Dimensional Data and Its Applications at the 2nd ACM-SIAM Intern. Conf. on Data Mining (ICML98),
Philadelphia, USA, 2002, pp. 71-78.

T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, A local search approximation
algorithm for k-means clustering, Computational Geometry: Theory and Applications, 28:2-3 (2004) 89-112.

P.S. Bradley and U.M. Fayyad, Refining initial points for k-means clustering, Proc. 15th Intern. Conf. on Machine
Learning, 1998, pp. 91-99.

D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, Proc. 18th ACM-SIAM symposium on
Discrete algorithms (SODAOQ7), New Orleans, Louisiana, 2007, pp. 1027-1035.

R. Maitra, Initializing Partition-Optimization Algorithms, IEEE/ACM Trans. Computational Biology and Bioinfor-
matics (TCBB09), 6:1 (2009) 144-157.

L. Parsons, E. Haque, H. Liu, Subspace clustering for high dimensional data: a review, ACM SIGKDD Explo-
rations Newsletter, 6:1 (2004) 90-105.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing by latent semantic analysis,
Journal of the American Society for Information Science, 41 (1990) 391-407.

D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, Journal of Machine Learning Research, 3 (2003)
993-1022.

P. Mitra, C.A. Murthy, S.K. Pal, Unsupervised Feature selection using feature similarity, IEEE Trans. Pattern
Analysis and Machine Intelligence, 24:3 (2002), 301-312.

N. Wiratunga, R. Lothian, S. Massie, Unsupervised feature selection for text data, Proc. 8th European Conf. on
Case-Based Reasoning, 2006, pp. 340-354.

Q. Wu, Y. Ye, M. Ng, H. Su, Hanjing, J. Huang, Exploiting word cluster information for unsupervised feature
selection, Proc. Trends in Artificial Intelligence (PRICAI10), 2010, pp. 292-303.

D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, Proc. 16th ACM SIGKDD Intern.

29



Conf. on Knowledge Discovery and Data Mining (KDD10), 2010, pp. 333-342.

[53] Y. Zhang, Z.H. Zhou, Multilabel dimensionality reduction via dependence maximization, ACM Trans. on Knowl-
edge Discovery from Data, 4:3 (2010), 1-21.

[54] Y.B.Liu, J.R. Cai, J. Yin, AW.C. Fu, Clustering Text Data Streams, Journ. of Comp. Sci. and Tech., 23:1 (2008),
112-128.

[55] J.W. Leea, N.H. Park, W.S. Lee, Efficiently tracing clusters over high-dimensional on-line data streams, Data and
Knowledge Engineering, 68:3 (2009), 362-379.

[56] R.Huang, W. Lam, An active learning framework for semi-supervised document clustering with language model-
ing, Data and Knowledge Engineering, 68:1 (2009), 49-67.

30



