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Abstract—This paper investigates the control of a diffu-
sion process by utilizing real-time information. More specifi-
cally, we allow the network administrator to adjust the alloca-
tion of control resources, a set of treatments that increase the
recovery rate of infected nodes, according to the evolution of
the diffusion process. We first present a novel framework for
describing a large class of dynamic control strategies. These
strategies rely on sorting the nodes according to a priority
score in order to treat more sensitive regions first. Then, we
propose the Largest Reduction in Infectious Edges (LRIE)
control strategy which is based on a greedy minimization
of the cost associated to the undesired diffusion, and has
the benefits of being efficient and easy to implement. Our
simulations, which were conducted using a software package
that we developed and made available to the community,
show that the LRIE strategy substantially outperforms its
competitors in a wide range of scenarios.

I. Introduction
Network diffusion processes (DP) have received much
attention recently from scientists of various fields, such
as epidemiology and medicine, sociology, computer science,
and marketing. Among other applications, a DP can model
the spread of a disease or information (ideas, news, product
penetration) in a network through node-to-node propagation.
The main purpose of modeling a DP can be: its analytic
description that would lead to accurate predictive models
about its evolution given the current state, and the control of
the process given a certain type of available control actions.

In this work, we study the control of diffusion processes
and we use the epidemic control as reference. The analysis
of this problem and the design of control strategies are
complex and depend heavily on factors such as: i) the type
of the diffusion process, e.g. each node can be prone to
single or multiple infections, ii) the network structure, and
iii) the type of control actions available to authorities. Our
aim is to perform dynamic epidemic control using real-time
resource allocation. At each instant in time, a certain budget
of resources is available and the authorities need to decide
which nodes should receive them based on the current state
of the network. This setting is particularly representative
for the control of undesired diffusion processes in a social
network, such as the spread of particular interests, malicious

behaviors (e.g. violence, racism) or even health related
behaviors such as obesity (recently shown to be diffusive
through a social network [1]) or smoking.

It is generally hard to collect real-time information about
a DP. For epidemic control, it is currently out of reach to be
able to know the exact state of every individual in a large
network, or the complete underlying network of relations.
However, the common practice of epidemiologists is to work
on a simplified network where each node summarizes the
state of large parts of the actual network. Transportation
networks are good candidates for this purpose, not only
because each node (e.g. an airport) corresponds to specific
geographic areas, but also because control policies can be
easily applied directly on those sites (e.g. cancellation of
flights, thermal cameras, etc.). On the other hand, real-time
information about a DP taking place on a digital network is
quite feasible to collect even at the level of individuals, e.g.
tracking the diffusion of memes and links among the users
of a social network [2, 3], and could enable the application
of dynamic control strategies to their full potential.

Our contributions are: First, we propose a model
formulation for the dynamic control of diffusion processes
as a dynamic resource allocation (DRA) problem. Second,
we investigate DRA strategies and propose the novel Largest
Reduction in Infectious Edges (LRIE) control strategy based
on the minimization of a second-order approximation of
the cost associated with a diffusion process. We explain
that LRIE greedily minimizes the number of infectious
edges that can transmit the infection from infected to
healthy nodes of the network. This way, it reduces the
scattering of the infection across the network and allows
for efficient DP control. Third, our experimental study on
randomly generated and real-world networks shows that
LRIE outperforms well-known centrality-based strategies,
whose performance is suboptimal for this particular problem.
Fourth, our simulations were conducted using a software
package that we developed and made available to the
community1.

1 The Matlab code and supplementary technical material for this work
are available at: http://kalogeratos.com/material/lrie-dra/.



II. Related work
Most studies focus on static control where the strategy is
applied prior to the epidemic. A budget of resources is
used to set up barriers in the network aiming to reduce
the spread of a possible virus threat through the population
[4, 5, 6, 7, 8, 9]. In essence, such vaccination approach
provides vaccines to immunize some nodes, thus, render
them uninvolved in any future spread of the virus. A slightly
different approach consists in distributing antidotes that,
instead of immunizing a node, increase its recovery rate [10].
The considered priority of a node to receive a vaccine or
antidote largely depends on graph-theoretic node attributes,
such as centrality and degree, that ignore the nodes’ infection
states when an epidemic is already present.

Other past studies have considered static resource
allocation [10, 11], or the particular case of contact tracing
[12, 13]. The latter, study the potential pathways of disease
transmission between individuals, in order to take highly
invasive, local, and predesignated actions (e.g. treatment or
isolation), which is especially effective for suppressing a
DP when there are still very few infected nodes.

However, when dealing with a real-world epidemic
scenario, it is natural for authorities to take real-time actions.
This is achieved by utilizing any available information about
the infection state of the population and its connectivity.
While vaccination can be characterized as preventive since
vaccines are given to healthy nodes, resource allocation is
essentially corrective since its purpose is to aid the infected
nodes to recover more quickly.

Indeed, recent studies have elaborated the idea of taking
into account real-time information. Antidote distribution
or palliative care has been investigated using dynamic
strategies and optimal control [14, 15, 16, 17]. These
works examine how the size of the available budget of
resources should vary through time -yet not how it should
be distributed- to efficiently suppress an epidemic while
meeting, at the same time, certain cost and efficiency
constraints. For this purpose, a mean-field assumption is
made to describe the macroscopic evolution of the epidemic
in terms of several high-level differential equations.

Dynamic resource allocation was studied in [13, 18]. In
the first, the authors considered curing rates that can depend
on the current node infection state, but only the dynamic
contact tracing was investigated. In the second, a dynamic
optimization framework was designed to produce strategies
that are robust to adversarial intervention, and then, they
were used for epidemic control. The authors also derive an
optimal dynamic control strategy based on a simplification
of the DP. However, it is questionable if their approach is
applicable for large networks (their simulations were on
networks of less than ten nodes).

To the best of our knowledge, the question of how the
available resources should be distributed in an arbitrary and

large network in real-time remains unanswered. Our work is
not opposed to static vaccination strategies, or macroscopic
dynamic control strategies that adjust the budget size of
the resources. It is rather complementary to those: even
if real-time reaction during the DP is possible, preventive
action would still be valuable for the overall effectiveness
of the DP control. Moreover, while herein we focus on how
to distribute resources in the network, we do not address
the question of how many resources should be given at each
time, nor we consider auxiliary constraints (e.g. cost).

III. Framework for epidemic diffusion and control
A. Modeling epidemic spread: The Susceptible-Infected-
Susceptible (SIS) model [19] is used to model the DP of
a disease. Each node is either healthy, hence susceptible
to be infected, or already infected. A susceptible node can
become infected only if at least one of its neighboring nodes
is already infected, while an infected node returns to the
susceptible state after a period of recovery time. Therefore,
the SIS model is appropriate for diseases for which the nodes
do not develop permanent immunity and remain prone to
multiple infections. Interesting to note, such a model can
also be valid for information diffusion in a social network.

We use the standard SIS model formulated as a
Continuous-time Markov Process [19]. In the follow-
ing, t∈R+ will be the (continuous) time variable. Let
A∈RN×N be the adjacency matrix of an arbitrary directed
and weighted network of N nodes, where Aij =wij is a
non-zero weight only if an edge exists from node i to node j.
Let also X(t) be the infection state vector at time t, where
Xi(t) = 1 if node i is infected at time t, and 0 otherwise.
The control of a DP is achieved via a dynamic resource
allocation (DRA) approach: a set of nodes is determined to
receive a treatment in order to recover more quickly. Let R(t)
be the vector representing the distribution of resources in
the network, hence Ri(t) = 1 if node i receives a treatment
at time t, and 0 otherwise. Using the formalism of [20], we
model the diffusion with a continuous-time Markov process
with the following transition rates:

Xi(t) : 0→ 1 at rate β
∑
j AjiXj(t);

Xi(t) : 1→ 0 at rate δ + ρRi(t),
(3.1)

where β, δ, ρ are parameters describing, respectively, the
infection rate, the recovery rate without a treatment, and
the increase in the recovery rate that a treatment induces.
Roughly speaking, Eq. 3.1 indicates that a susceptible node
gets infected at a rate proportional to the number of its
infected neighbors. Conversely, an infected node recovers
at a constant rate δ if it does not receive a treatment, and at
δ+ ρ if it is being treated at this particular time (Ri(t) = 1).
This model is similar to the heterogeneous N-intertwined
SIS [10], except that we restrict the node recovery rate in
{δ, δ+ ρ}, instead of a general δi ∈R+. This also implies



that multiple resources cannot be accumulated on the same
node to increase the recovery rate. Finally, we define two
dimensionless parameters: r= β

δ the effective spreading rate
of the DP, and e= ρ

δ the treatment efficiency.

B. Dynamic resource allocation (DRA): A DRA stra-
tegy determines the resource allocation R(t) aiming to
suppress the diffusion process. For a resource allocation
R(t), let NR

I (t) =
∑
iXi(t) be the number of infected

nodes at time t. We consider that the undesired diffusion
process induces a cost C(NR

I ) which depends on the
number of infected nodes during the epidemic under a
given strategy R. The purpose of a DRA strategy is to
minimize this cost using a predefined budget of resources
b(t), i.e. minR C(NR

I ). While many cost functions can be
used for different purposes (see examples in §V-A), we will
focus on the following cumulative cost (see [16]):

C(NR
I ) =

∫ +∞
t=0

e−γtE[NR
I (t)]dt, (3.2)

where R is a valid DRA strategy and γ≥ 0 is a parameter
that reduces the impact of the long-term behavior of NR

I (t).
To simplify what follows, we omit to mention the strategy
R in NR

I (t) when there is no ambiguity on the strategy
used to decide the resource allocation.

We now define valid DRA strategies: we consider
strategies which can depend on the state vector X(t). Note
that, since X(t) is a stochastic function (i.e. a random
variable in a function space), R(t) is also a stochastic
function. Nevertheless, we have to consider strategies which
take into account only past values of X(t), which are the
observations up to time t. In mathematical terms, R(t) is
adapted to the natural filtration associated to X(t). Formally,
a DRA strategy is defined as the stochastic process:

R : R+ → {0, 1}N
s.t. ∀t ∈ R+,

∑
iRi(t) ≤ b(t).

(3.3)

At each time instance t, a limited budget b(t)�N
of resources is available for distribution. The formulated
framework is quite generic but an extensive analysis of the
kinds of problem it could model is beyond the scope of this
work. Here we suggest a series of constraints to devise a
tractable problem variation to further work with:

• Unlimited resources, disposed at constant rate. A fixed
amount of btot resources is available at each time.

• Inability to store resources for later use.

Intractability of optimal strategies. In theory, optimal
strategies can be found using the framework of Markov
decision processes (MDP) and optimal control. However,
such approaches are computationally intractable due to the
very large state space: 2N states for a network of N nodes. A
basic MDP approach would require to store a parameter for
each element of the state space, which would be prohibitive

Algorithm 1 Applying a score-based DRA strategy

Input : infection state vector X(t), budget size btot,
scoring function S.

Output: the resource allocation vector R(t).

if
∑
iXi(t) < btot then

return X(t)
end if
Let R(t) a zero N -dimensional vector
Let V ←{Si(X(t))}Ni=1 a vector containing the node scores
Sort the elements of V in descending order

and let I the node indexes of the ranking
for i = 1 to btot do
RI(i)(t)← 1

end for
return R(t)
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Fig. 1: Example network with healthy (white) and infected (red)
nodes. Dashed edges denote infectious edges on which the disease
might spread.

in practice for even a network of 50 nodes. For this reason,
we investigate other strategies and, specifically, a greedy
heuristic for solving the DRA problem presented in §IV-B.

IV. DRA Control Strategies
A. Score-based strategies: A wide class of strategies can
be described in terms of a scoring function S that takes as
input the current infection state X(t) and returns a priority
order for the nodes of the network. More specifically, we
define a strategy based on score S as a selection of the btot
top ranked nodes according to S(X(t)):

Ri(t) =

{
1 if Si(X(t)) ≥ θt;
0 otherwise, (4.4)

where θt is a threshold value, set so that the distributed
resources do not exceed the budget, i.e.

∑
iRi(t) = btot.

Note that, while the above formulation is general, simple
scoring functions that rank the nodes based on their local
properties, are not well-suited for planning coordinated
actions, e.g. taking advantage of the position of other
treatments when deciding where to allocate the current
one. In the rest of the text, we will refer to the strategies
that use scoring functions that are independent of the current
state X(t) as static strategies; they will form a baseline
to assess the significance of real-time information for the
DRA problem.

Alg. 1 presents a simple pseudocode for applying
a score-based strategy. In general, its complexity is
O(E+N logN) due to the sorting of N score values,
where E is the number of edges and N the number of



nodes of the network. However, when the scoring function
depends on local properties of the network and DP, the
computational cost can be drastically reduced by partially
updating the previous calculated node ranking, since only
one node can change state at a time and only the scores
of its neighboring nodes need to be updated. Any type of
node attribute, or measurement associated to each node
individually, can potentially be used to define a scoring
function S. §IV-B presents the scoring functions considered
in this article.

Fig. 1 shows the infection state of a network. Node
h is the most connected, d has the highest diffusion rate
(three healthy neighbors), e and h are the least and most
probable to get reinfected if they recover. Scores that would
give emphasis to properties like node centrality or degree,
would tend to assign the highest priority to node h, while a
strategy focusing on the most diffusive nodes would prefer
to give a higher priority to node d.

B. LRIE – A greedy approach to DRA:
Optimization problem. In order to suppress a diffusion
process as quickly and efficiently as possible, we consider
the minimization of the integral of the number of infected
nodes (see §V-A for a discussion on the quality metrics):

minR Cγ(R) =
∫ +∞
t=0

e−γtE[NI(t)]dt, (4.5)

where R is a valid DRA strategy (see §III-B) and γ≥ 0
is a parameter that reduces the impact of the long-term
behavior of NI(t). Since the process is Markovian, it is
straightforward that such an optimal strategy also minimizes
Cγ(R, t,X) =

∫ +∞
u=0

e−γuE[NI(t+u)|X(t) =X]du for all
time instances t and all state vectors X ∈{0, 1}N . In the
following, we achieve this optimization by approximating
the short-term behavior of E[NI(t+ u)|X(t) =X].

The LRIE solution. Using a second-order approximation of
Φt,X(u) =E[NI(t+u)|X(t) = X], we obtain the following
approximation of Cγ(R, t,X):

Cγ(R, t,X) = 1
γ

∑
iXi + 1

γ2 Φ′t,X(0)

+ 1
γ3 Φ′′t,X(0) +O( 1

γ4 ),
(4.6)

The minimization of the first and second order derivatives
can be achieved simultaneously, and the resulting strategy,
which we name Largest Reduction in Infectious Edges
(LRIE), selects infected nodes according to the following
scoring function:

SLRIE(X(t)) = AX(t)−A>X(t)

=
[∑

j [AijX j(t)−AjiXj(t)]
]N
i=1
,

(4.7)

where X(t) =1−X(t) is the vector indicating the healthy
nodes, and 1 is the vector with ones for all coordinates.

This value can be seen as the difference in the number
of infectious edges (i.e. edges that can transmit the disease

from an infected to a healthy node) after healing a specific
node. For the situation of Fig. 1, five infectious edges would
be added if node h was healed. Respectively, one infectious
edge would be added if node d was healed, while, if the
infection was removed from node e, then the number of
such edges would decrease by two. In essence, minimizing
the number of infectious edges reduces the scattering of the
infection across the network. Consequently, a smaller front is
created separating the healthy region from the infected nodes,
and enables better control over the DP. The pseudocode of
Alg. 1 can be used for applying the LRIE strategy.

Note that, in theory, the method is also applicable to
higher-order approximations of Cγ(R, t,X). However, the
mathematical complexity of the derivation of even third-
order derivatives makes these improvements less practical,
and better left to future investigation.

Scalability of LRIE. Eq. 4.7 can be easily computed for the
needs of Alg. 1 by updating the score vector of the current
state. When a node i changes state, only this node and
its neighbors need an update of their scores. Then, sorting
the scores will only cost O(degree(i) logN) provided the
(N − degree(i)) other nodes are already sorted.

Technical details. We now provide the derivation of the
SLRIE score by computing the first and the second order
derivatives of Φt,X(u). The Markov property of the process
implies that Φt,X(u) = Φ0,X(u) =E[NI(u)] when the ini-
tial infection state is X(0) =X . From the formulation of
Eq. 3.1, we derive the following formulas:

d
dtE[Xi(t)] =−δE[Xi(t)]

−ρE[Xi(t)Ri(t)]
+β
∑
j AjiE[X i(t)Xj(t)].

(4.8)

And, for two different nodes i 6= j:

d
dtE[Xi(t)Xj(t)] =−2δE[Xi(t)Xj(t)]

−ρE[Xi(t)Xj(t)(Ri(t)+Rj(t))]
+β
∑
k AkiE[X i(t)Xj(t)Xk(t)]

+β
∑
k AkjE[Xi(t)X j(t)Xk(t)].

(4.9)

Using Eq. 4.8, we can write the derivative of E[NI(t)] as:

d
dtE[NI(t)] =−δE[NI(t)]

−ρE[X(t)>R(t)]
+βE[X(t)>AX(t)],

(4.10)

and Φ′t,X(0) = −δNI(X)− ρX>R(t)− βX>AX. (4.11)

Minimizing this derivative w.r.t. R(t) is thus equivalent
to only selecting nodes which are infected. In the following,
we consider that Xi(t) = 0⇒Ri(t) = 0 and

∑
iRi(t) =

min(btot,
∑
iXi(t)) (i.e. R(t) minimizes the derivative in

Eq. 4.10). Using Eq. 4.9 and 4.10, the second order derivative



of E[NI(t)] can be written as:
d2

dt2
E[NI(t)] = −δ ddtE[NI(t)]

−ρ ddtE[X(t)>R(t)]
+β d

dtE[X(t)>AX(t)]
= −βρE[{AX(t)−A>X(t)}>R(t)]

+Ξ(t),

(4.12)

where Ξ(t) is independent of R(t) 2. We thus have:

Φ′′t,X(0) = −βρ{AX −A>X}>R(t) + Ξ, (4.13)

where Ξ is independent of R(t). Minimizing the second
order approximation of Cγ(R, t,X) is thus equivalent to
selecting infected nodes that maximize the following score:
SLRIE,i =

∑
j [AijX j(t)−AjiXj(t)].

V. Experimental results
The DRA strategies were compared using simulations on
various random and two real-world networks. To measure
the performance of a strategy on a network, 10 to 100
simulations were performed, starting from the same fixed
overall infection level of the network (%), but with different
random initializations of the nodes’ infection state when
infection is less than 100%. In all cases we set δ= 1. In order
to conduct our simulations we developed a software package
in Matlab that we made publicly available for research use
at: http://kalogeratos.com/material/lrie-dra/.

A. Quality assessment for DRA strategies: In literature,
many quality metrics are available related to diffusion
processes (DP). In our experiments, we used the metrics
below, which are functions of the number of infected nodes
at time t (i.e. NI(t)):

• Time to extinction (↓): Text = mint{NI(t) = 0} (see
[20]). Describes the speed of convergence to a healthy
network (necessarily bounded since X(t) = 0 is the only
absorbent state of the Markov Process). Note that this
value can be very high, specifically exponential w.r.t.
N [20], for an aggressive DP and inefficient treatment
resources (i.e. r high and e low, see §III-A).

• Area Under the Curve (AUC) (↓):
∫ +∞
t=0

NI(t)dt. This is
a special case of cumulative metrics (see §3.2 and [16])
representing the overall cost of an epidemic (i.e. small
value is better). However, AUC uses equal temporal
weighting for short- and long-term behavior, thus gives
the total number of infected nodes during the DP.

• Stable infection state (↓): NI(T∞) for a sufficiently large
T∞ value (see e.g. [4]). For a particularly aggressive DP,
the epidemic becomes a pandemic and NI(t) converges,
for reasonably large time period, to a stable non-zero

2 We omit the complete derivation which is rather simple
and straightforward. A technical appendix is available at:
http://kalogeratos.com/material/lrie-dra/.

Strategy Scoring function Si(X) for node i
RAND σ(Xi)+Ri, where Ri is i.i.d. uniform in [0, 1]
MN σ(Xi)+

∑
j Aij

PRC σ(Xi)+Pi, where Pi is the PageRank score for
node i

LRSR σ(Xi)+(λ1−λG\i
1 ), where λ1 is the largest eigen-

value of A, and λG\i
1 the largest eigenvalue of

the matrix AG\i for the network without node i
MSN σ(Xi)+

∑
j AijX j

LIN σ(Xi)−
∑
j AjiXj

LRIE σ(Xi)+
∑
j [AijX j−AjiXj ], sums MSN and LIN

TABLE I: Various derived DRA scoring functions. In all strategies,
σ(1)= 0 and σ(0)= −∞. Also, recall that X(t) is the infection
state vector and X(t) is the vector indicating the healthy nodes
(see §IV-B).

value. Of course, this is not a true stationary value since,
as explained above, limt→+∞NI(t) = 0. However, in
the case of a pandemic, this convergence happens after
an exponentially long time period [20], while the DP
reaches a non-zero stable state in reasonable time.

Regarding the simulation results, they are being illus-
trated using the following figure types:

• Line plots represent, as solid lines, the expected number
of infected nodes for each strategy, and their surrounding
area is the 95% confidence interval under Gaussian
hypothesis3 (e.g. Fig. 2).

• Heat maps compare two strategies for a wide range
of parameter values for the DP’s effective spreading
rate r and treatment efficiency e (see §III-A). In these
simulations, we consider a total infection at the initial
stage. The color of each point (e.g. Fig. 3) depicts
the ratio R(r, e) of an employed quality metric on the
performance of two strategies, for a set of values (r, e).
Here AUC is used as quality metric:

∫ T∞
t=0

NI(t)dt, where
T∞ denotes a sufficiently long time period. Contrary to
the general AUC definition of the previous paragraph,
here we stop the integration after a relatively long
simulation period T∞ in order to compare the quality of
stable non-zero behaviors, as well. In this case, the ratio
is equal to the ratio of stable infection state metrics.

Technical details. In practice, the duration of the simulation
plays a fundamental role in the quality of our results due to
the integral definition of AUC. If the behavior is convergent
to 0, then the simulation should run until convergence to the
absorbent state. Otherwise, NI(t) is stationary for relatively
long time, and the simulation can be terminated when stable
behavior is reached. We used a statistical test to assess, with
a 99% confidence, the non-zero value of the slope of NI(t)
under a linear regression assumption. When the slope is

3For Ntests simulations, this is 2
σNtests√
Ntests

, where σNtests is the
standard deviation of the measurements.



sufficiently small, we consider NI(t) to be stationary and
we terminate the simulation. In such a case, the AUC is
approximately T∞NI∞, where NI∞ is the stable value of
the number of infected nodes.

B. Competing strategies: To the best of our knowledge,
there are no methods in the current literature that deal with
the specific problem of diffusion control we introduced in
§III-A. Consequently, the proposed Largest Reduction in
Infectious Edges (LRIE) method is compared to several
other heuristic scoring functions:

• Random (RAND): selects nodes uniformly at random,
without replacement, among infected nodes.

• Most Neighbors (MN): selects the infected nodes with
the largest number of neighbors.

• PageRank Centrality (PRC): selects the most central
infected nodes according to PageRank algorithm [21].

• Largest Reduction in Spectral Radius (LRSR): selects
the infected nodes which lead to the largest drop in the
first eigenvalue of the adjacency matrix of the network.

• Most Susceptible Neighbors (MSN): selects the infected
nodes with the most non-infected neighbors.

• Least Infected Neighbors (LIN): selects the infected
nodes with the lowest number of infected neighbors.

Tab. I provides the expressions to compute the scoring
function that are experimentally compared. MN, PRC, and
LRSR come from the static vaccination literature, and we
will later refer to them as centrality-based strategies since
they focus on nodes that are central in the network topology.

MSN and LIN are intuitive heuristics based on the
assumptions that a node with many susceptible neighbors
will spread the virus quickly, while a node with many
infected neighbors will get infected with high probability.
Notably, MSN and LIN are complementary to each other.
Indirectly, the former focuses on ‘central’ nodes with large
degree, while the latter tends to target nodes at the network
‘periphery’. Thus, MSN and LIN capture different aspects
of how critical a node is for the diffusion. The proposed
LRIE strategy can also be seen as a combination of MSN
and LIN, since it essentially seeks for nodes which are both
diffusive for many healthy neighbors and, at the same time,
safe in a mildly infected neighborhood.

C. Experiments on simulated networks: We used two
types of random networks: i) Erdös-Rényi networks [22]
(parameter: the edge probability p), ii) scale-free networks
generated by the Barabási-Albert preferential attachment
approach [23] (parameter: the number of added edges with
each node m). We generated a different network for each
simulation using the same values for model parameters).

(a) r=2, e=4000, btot=10 (b) r=2, e=3000, btot=10

(c) r=0.2, e=5, and btot=200

Fig. 2: Results for Erdös-Rényi networks: N=104 nodes,
p= 0.001.
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Fig. 3: Efficiency of LRIE compared to LRSR for an Erdös-Rényi
network: N =1000, p=0.01. Small and large ranges of values
are used for r=β/δ, e= ρ/δ.

1) Erdös-Rényi random networks: Fig. 2 presents sim-
ulation results on Erdös-Rényi networks with the same
parametrization of the generator, while using different
parameter values for r, e, btot, and two different cases
of initial infected population. In all simulations LRIE
performs better than the competing strategies. We observe
two different behaviors depending on the percentage of
initially infected population. If this is low (30% in Fig. 2a),
then centrality-based strategies (MN, PRC, LRSR) perform
well and eliminate the DP. However, when this percentage is
large (100% in Fig. 2b) and the budget btot is low, only LRIE
is able to eliminate the DP. More importantly, MN, PRC, and
LRSR seem counter-effective, as they present worse results
than the random strategy. The reason, in this case, is that
central nodes have many infected neighbors which makes



(a) e=4000 (b) e=3000

Fig. 4: Results for random scale-free networks: N =104 nodes,
m=5, r=2, and btot=10 resources.
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(b) btot=10; large r, e values

Fig. 5: Efficiency of LRIE compared to LRSR for a scale-free
network: N =1000, m=5. Small and large ranges of values are
used for r=β/δ and e= ρ/δ.

them prone to quick reinfection. Fig. 2c presents a scenario
with only moderately effective treatments (e= 5). Note that
Fig. 2 presents worse case scenarios for centrality-based
strategies, whereas they do not provide insights whether
those situations are usual or rare extreme cases.

In order to allow for more general observations, we
present heat maps that compare LRIE to LRSR (the best
among the competitors of LRIE) for a range of parameter
values. Note that all the presented heat maps consider totally
infected networks at the initial stage, and display three
characteristic regions: i) the lower-left region in which both
strategies are not able to eliminate the DP, ii) the middle
blue region where LRIE eliminates the DP but its competitor
fails to do the same, and iii) the upper-right region in which
both strategies converge to NI(t) = 0.

Fig. 3a considers a range of realistic parameter values (a
low treatment efficiency, and moderate budget of resources).
We can see that LRIE is always more efficient than LRSR
(i.e. ratio< 1) and, in a large region of the space of parameter
values, LRIE increases the relative quality of DP control
by 10% or more. Also, there is a thin line where the ratio
decreases to 0 indicating that LRIE eliminates the DP while
LRSR fails to do so.

Finally, Fig. 3b compares LRIE to LRSR for a larger
range of parameter values. In this setting, the efficiency of
LRIE increases and the blue region becomes larger than that
in Fig. 3a. The fact that such a region is approximately of

Network DP scenario Strategy AUC↓ Text↓ NI(T )↓
δ r e btot

Twitter 1 0.2 300 100 RAND ∞ ∞ 30.6%
subgraph MN ∞ ∞ 33.4%

LRSR 246,476 7.70 0%
MSN 89,671 2.52 0%
LRIE 64,425 2.07 0%

1 0.2 200 100 RAND ∞ ∞ 37.3%
MN ∞ ∞ 42.3%
LRSR 161,195 5.11 43.2%
LRIE 87,600 3.03 0%

1 0.2 50 100 RAND ∞ ∞ 46.4%
MN ∞ ∞ 48.5%
LRSR ∞ ∞ 48.9%
MSN ∞ ∞ 44.4%
LRIE ∞ ∞ 29.2%

US air 1 2 210 50 RAND ∞ ∞ 26.1%
traffic MN ∞ ∞ 73.8%

LRSR 3,723 1.81 0%
MSN 3,235 1.65 0%
LRIE 493 0.43 0%

1 2 150 50 RAND ∞ ∞ 38.9%
MN ∞ ∞ 76.6%
LRSR ∞ ∞ 76.5%
MSN ∞ ∞ 76.4%
LRIE 863 1.08 0%

1 2 100 50 RAND ∞ ∞ 49.7%
MN ∞ ∞ 79.0%
LRSR ∞ ∞ 79.2%
MSN ∞ ∞ 77.4%
LRIE ∞ ∞ 23.1%

TABLE II: Results of the simulations on two real networks. An
infinite value for AUC and extinction time Text means that the
number of infected nodes reached a non-zero stable infection state
NI(T ) in our simulations. T =16 for the Twitter subgraph, and
T =2 for the US air traffic dataset.

the form aβ≤ ρ≤ bβ, with a, b∈R, is characteristic of the
DRA problem and indicates that, similarly to the epidemic
threshold in δ/β in the absence of control [6], the diffusion
process also displays a sudden switch in its behavior when
ρ/β reaches a certain threshold, depending on the strategy.

2) Scale-free random networks: Scale-free networks are
extremely prone to epidemics due to the existence of highly
connected nodes. The behavior of the compared strategies
are similar to the Erdös-Rényi case (see Fig. 4 and Fig. 5),
except that the DP is more aggressive. In Fig. 4a, some of
the strategies do not manage to converge, despite initiated
with a low percentage of infected nodes. As expected, MN
is more efficient in this case compared to PRC and LRSR
since node degree is more significant attribute in a scale-free
network than in a network with uniform random connections.
Heat maps in Fig. 5 present similar characteristics to those
of Fig. 3 for Erdös-Rényi networks, except there is a slightly
improved performance for LRIE relatively to LRSR.

D. Simulations on real-world networks: Specifically:

• The US air traffic for the year 2010, containing 2, 939
nodes and 30, 501 edges. The nodes correspond to the
US airports that serviced domestic and international
flights, and those non-US airports that serviced flights



to US, during that year4.
• A Twitter subgraph extracted from 1, 000 ego-networks

of the social network [24]. The resulting network
contains 81, 306 nodes and 1, 342, 303 edges.

Tab. II summarizes the simulation results on these
networks, where three scenarios were considered:
• High treatment efficiency: For the most efficient strate-

gies, the DP reaches zero in reasonable time. In this
case, AUC and extinction time are good quality metrics
for the comparison of strategies.

• Moderate treatment efficiency: Only LRIE is able
to eliminate the DP, thus showing the substantial
improvement of the method over its competitors.

• Low treatment efficiency: In this case, the considered
strategies suppress the epidemic but none of them
eliminates it. However, LRIE still achieves a far lower
stable state infection than its competitors.
In all three regions, LRIE seems robust and substantially

outperforms its competitors. Note that for low treatment effi-
ciency, centrality-based strategies become counter-effective
with even higher stable infection level than that of RAND.
Intuitively, this result is due to the fact that at the beginning
of the DP the whole network is infected. Although central
nodes have many infected neighbors and are prone to fast
reinfections, these strategies will keep their focus on these
highly connected nodes and will hence fail to clear the
central part of the network, which results in a high stable
infection level. Contrary, LRIE indirectly tends to contain the
infected nodes in clusters and reduces infection’s scattering.
Even with low treatment efficiency, LRIE will first focus on
the periphery and gradually contain the DP to the central
part of the network, achieving a significantly lower stable
infection percentage.

VI. Conclusion and future work
In this paper, we investigated the use of real-time information
for allocating treatment resources in a network so as to
suppress a diffusion process. First, we presented a model
formulation as a dynamic resource allocation problem
(DRA). Then, we proposed the novel Largest Reduction in
Infectious Edges (LRIE) control strategy which minimizes
the second-order approximation of the cost associated
with a diffusion process. We analyzed that this approach
minimizes the number of infectious edges that can transmit
the infection to healthy nodes, and thus reduces the scattering
of the infection across the network. Simulations on various
randomly generated and two real-world networks showed
that the proposed LRIE strategy is the most effective and
robust among the compared strategies. Finally, we released
a version of our simulation software for research use.

4Source of data: OpenFlights, http://Openflights.org.
Available at T. Opsahl’s web post: http://wp.me/poFcY-Vw.

Our plans for future work include a deeper theoretical
study of the DRA problem as well as the development
of better strategies. Notably, the combination of the short-
term criterion used by LRIE and some kind of longer-term
planning would certainly improve the control performance.
This long-term planning could benefit from the particular
characteristics of social networks, such as clusters.
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