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1 Introduction

Studying the way in which diffusion processes evolve in networks is fundamental for
further understanding such complex and dynamic phenomena. In particular, being able
to predict the number of nodes that will be reached at the end of the spread when
that starts from a known set of initial infection seeds (i.e. seeds’ influence) is of broad
interest. Taking preparatory measures by acting on the network, so as to reduce the reach
of a possible future diffusion, is a core administration problem. Traditionally, that has
been studied as a way to improve public healthcare (e.g. through vaccination), recently
though it has attracted a lot of attention due to the concerns raised by cases of malicious
information propagation in social networks (e.g. fake news, rumors).

In the existing literature the role of the spectral radius of the adjacency matrix rep-
resenting the underlying network has been largely highlighted as a quantity tightly con-
nected with the epidemic threshold over which the reach of the diffusion explodes and
becomes comparable with the network size [8,4,1]. Various studies have been presented
for virus propagation models and influence maximization [10,6,5].

In this paper we present a brief overview of our recent work on partial node im-
munization in Continuous-Time Information Cascade Model (CT IC) [7]. CT IC [2] is
a stochastic model allowing propagation rates along edges to vary in time. Relying on
previous work, we use the concept of Hazard radius introduced in [4], that is highly
correlated to the influence and helps us in deriving upper bounds for the influence un-
der the CT IC. We subsequently develop the NetShape strategy that enjoys a convex
relaxation and, among other influence optimization tasks that we do not go through in
this short summary, it can be used for offline and partial node immunization. In that
scenario, a budget of treatment units is available. Each treatment unit can target a single
node, in advance of the diffusion, thereafter reducing node’s propagation rates along all
of its outgoing edges by a fixed factor.

2 Results

The NetShape method. Formally, let Fi j(s−τi) be the Hazard function, an element of
the Hazard matrix F , representing the propagation rate on edge i→ j at a specific time
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s after τi when node i received the piece of information and got ‘infected’. Also, let the
Hazard radius be the spectral radius of a matrix computed by integrating the Hazard
functions over time (i.e. the component-wise integration of the symmetrized F):

ρH(F)= ρ

(∫ +∞

0

F(t)+F(t)T

2
dt
)
, (1)

where ρ(·)=maxi |λi|, and λi are the eigenvalues of the implied input matrix (since
we refer to square matrices). By further elaborating results from [4], we have shown
that the maximum influence cannot exceed a certain proportion of the network that is
non-decreasing with ρH(F), and displays a sharp transition between a sub-critical and
super-critical regime. Therefore, we solve the following optimization problem over a
set of feasible Hazard matrices F that can be produced by valid actions on the nodes:

F∗= argminF∈F ρH(F). (2)

When F is a convex set, this optimization problem is also convex and the proposed
NetShape method uses a simple projected subgradient descent scheme to solve it. The
interested reader is refereed to [7] for more technical details on NetShape algorithm.
Experimental evaluation. We evaluated the NetShape algorithm for the offline and par-
tial node immunization under the CT IC and compared it with baseline and state-of-the-
art approaches for selecting the k nodes to target (k is the provided budget): i) random
node selection (Rand); ii) selection of the nodes with the highest out-degree (Degree);
iii) selection of k nodes with highest sum of outgoing edge weight wi j =

∫ +∞

0 Fi j(t)dt
(WeightedDegree), actually derived by the optimization of the lower bound LB1 in [3];
iv) the NetShield algorithm from [9] (originally designed for total immunization).

For our empirical evaluation we used an artificial random network with n=500
nodes generated as follows: 10 equally-sized Erdős Rényi clusters were first created
with edge creation probability p=0.1, then their adjacency matrices were synthesized
in a block-diagonal structure with a uniform inter-cluster rewiring probability p′=0.001.
Fig. 1a shows the structure of the adjacency matrix. Finally, the weights of the created
edges (i.e. the transmission probabilities) were generated using a trivalency model that
picks values uniformly at random from the set {low: 0.1, medium: 0.2, high: 0.5}.

Each treatment budget can be assigned to a single node and, here, we assume that it
can cause a fixed decrease of 70% in that node’s propagation rate along all of its edges.
Fig. 1b, c plot the curves (average values and stds) of two evaluation measures for our
simulations over a set of budget sizes. For each k value, we run 1000 simulations and
each simulation starts from nodes of high influence. The measure reported in Fig. 1 c is
the influence of the selected seeds, i.e. the expected proportion σ

n of infected nodes at
the end of the process. Also, the measure plotted in Fig. 1 c is the spectral radius ρH(F)
of the Hazard matrix that NetShape minimizes as a proxy for influence reduction.

Note that our purpose was to test in a meaningful parametrization scenario where
the spectral radius of the original network would have been close to 1 and, thus, its
decrease could cause a non-negligible reduction to the influence.
Performance results. The brief reported results show that: i) NetShape optimizes the
spectral radius ρH(F) (an empirical proof of correctness for our optimization scheme),
ii) effectively minimizes the influence (verifying the relevance of our optimization to
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Fig. 1. Comparison of NetShape’s performance against competitors on an artificially generated
random network. Tested k values: {5,10,20,50,100}. (a) The structure of the generated non-
symmetric, block-diagonal adjacency matrix (here plotted as binary matrix); (b) spectral radius
ρH(F) vs. budget k; (c) influence: the expected proportion of infected nodes σ

n vs. budget k.

the influence), iii) outperforms the competitors in both previous points; the largest dif-
ference is observed -as one could expect- when a moderate amount of treatments are
available. In conclusion, the presented approach seems promising and we plan to inves-
tigate its potential generalization to other influence optimization problems.
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