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ABSTRACT
In text streams, documents appear over time and their times-
tamps can be used to improve typical approaches for text
representation and clustering. A way to exploit temporal
information is through the detection of bursty terms in such
streams, i.e. terms that appear in many documents during
short time period. Research efforts so far have shown that
utilizing the burst information in the text representation can
improve the performance of text clustering algorithms. How-
ever, most attempts take into account the bursty terms in-
dividually, without investigating the relation between them.
In this work, we take advantage of the fact that most of the
important documents of a topic are published during the
period in which the ‘main’ topic terms are bursty. There-
fore, we focus on both term burstiness and co-burstiness by
determining groups of terms that are simultaneously bursty
at a time period and also co-occurring in the same docu-
ments. Next, the documents that contain co-bursty terms
from those groups, are considered as important for the re-
spective topics and are used to construct robust synthetic
prototypes following an agglomerative process. These proto-
types are finally used to initialize in a deterministic fashion
the spherical k-means clustering algorithm. Experimental
results validate empirically the quality of the solutions pro-
vided by the proposed approach which seems to efficiently
overcome the initialization problem of spherical k-means.

CCS Concepts
•Information systems→Clustering; Data stream min-
ing; Document representation;

1. INTRODUCTION
Clustering is one of the corner-stone unsupervised learn-

ing problems for the data mining and machine learning field
[6]. In a clustering task the aim is to discover groups of sim-
ilar objects and separate them from other dissimilar groups.
Text clustering, on static collections or text streams, is a
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challenging problem that receives increasing attention in re-
cent years due to its apparent applications on the textual
content that dominates the communication on the Web.
Sources such as social networks (e.g., Twitter and Face-

book) or newswire sites and blogs, produce continuous data
streams and in huge quantities.

This work investigates the problem of text stream cluster-
ing which is closely related to the topic detection problem
[2]. The goal is the identification of document clusters in
text streams, where each document is marked by a times-
tamp denoting the time at which it appears in the stream.
Each output cluster should contain documents that refer to
the same real-life topic, which is considered as a content ab-
straction since it may include multiple semantically similar
events that occur over time and produce temporal increase
of interest in the topic.

Conventional clustering neglects the timestamp informa-
tion of documents, hence the question regarding what kind
of improvement can be achieved to existing approaches by
taking into account this temporal information is straightfor-
ward. The most common way to do this, is through the de-
tection and exploitation of the bursty terms, which are terms
appearing in many documents during a short time period in
the stream. In particular, this involves the reweighting of
the feature vectors that represent the documents in the vec-
tor space model (VSM). The basic idea is the following: if a
term is bursty during a specific time interval, its contribu-
tion (term weight) should be increased in all documents that
contain the term and are published during that term’s burst
interval. In [8] a VSM extension with bursty term represen-
tation of documents is proposed that considers a bursty term
interval if an unusual large number of documents containing
that term appears in the stream. In the same spirit, other
VSM extensions have also been proposed [9, 25]. In these
approaches, the spherical k-means (spk-means) is employed
to cluster the enriched document vectors representations.
Note, however, that spk-means inherits the sensitivity to its
initialization from the k-means family, and hence may get
stuck into poor local maxima of the objective function.

In this work, we elaborate on the terms’ temporal infor-
mation and suggest a novel way to use it for improving text
stream clustering. We attempt to exploit both term bursti-
ness and co-burstiness over time. The burstiness is incorpo-
rated using existing related approaches that, as mentioned,
increase the importance of bursty terms individually for cer-
tain documents. As for the co-burstiness, we seek for groups
of terms that are co-bursty at the same time period and also
co-occur in the same documents. We then consider that



the documents containing bursty terms are representatives
for their topic. Specifically, we use such characteristic doc-
uments, to build cluster representatives by combining the
concepts of synthetic prototypes [11] and agglomerative clus-
tering. Finally, the obtained cluster representatives are used
to initialize the spk-means algorithm that provides the final
text stream clustering solution.

The rest of the paper is organized as follows. Sec. 2 refers
to the term burst detection problem and ways to integrate
the burst information to construct improved vector represen-
tations for documents. It also provides a description of the
idea of synthetic prototypes. Sec. 3 presents the proposed
method, called Correlated Bursty Term Clustering (CBTC).
In Sec. 4, comparative experimental results are presented,
and finally, Sec. 5 provides our conclusions and directions
for further research.

2. BACKGROUND AND RELATED WORK

2.1 Text Representation and Spherical k-means
Representation. As text stream S, we consider a set of
documents D that appear on a timeline which is split in T
non-overlapping time windows:

S = [s1, ..., sT ], (1)

where if |D|=N is the total number of documents of the
stream, then st ∈D represents a batch of documents pub-
lished at the t-th time window. The documents of a batch
are all attributed with one timestamp among {1, ..., T}.

The most widely-used text representation in the field of
text mining is the vector space model (VSM). Under this
model, a document is represented by a vector of weights
corresponding to text features of a vocabulary V of size
V = |V|. The weight of each term quantifies its relevance
to the document content. As features, according to the pop-
ular bag-of-words (BOW) approach, distinct terms are con-
sidered, and finally, a document di ∈RV is represented as a
V -dimensional vector:

di = [di1, ..., diV ]> = [tf i1 ·idf 1, ..., tf iV ·idf V ]>, (2)

where tf j is the frequency, and idfj = log N
dft

is the inverse
document frequency for term fj that is higher for more dis-
criminative terms. The common characteristics between two
documents are measured using the cosine similarity that
computes the cosine of the angle between two vectors:

simcos(di, dj) =
d>i dj

||di||2 ||dj ||2
∈ [0, 1]. (3)

We denote the matrix that stores the vector representations
of the documents, as stacked rows, as X∈RN×V .
Clustering . Spherical k-means (spk-means) is a k-means
variant that utilizes the cosine similarity as a proximity
measure, which ignores the vector magnitude, and the clus-
tering cohesion as maximized objective function. The opti-
mal representative for a cluster is its L2-normalized centroid,
denoted as rj , and the overall clustering cohesion of a par-
tition C is given by:

Cohesion(C) =

k∑
j=1

∑
di∈cj

r>j di. (4)

Given a dataset and the number of desired clusters k,
this algorithm initially selects k cluster representatives (cen-

troids), usually by picking documents at random. Then, it
iterates until convergence between two steps: one that as-
signs each document to the cluster with the closest represen-
tative, and a second one that updates the cluster representa-
tives by considering the updated cluster assignments. This
variant inherits the simplicity of its family and achieves fast
monotonic convergence. However, it suffers from the same
weaknesses, e.g. it converges to a local optimum of the ob-
jective function which largely depends on the initialization.

2.2 Synthetic Cluster Prototypes
The concept of synthetic cluster prototypes originates from

[11], where the k-synthetic prototypes (k-sp) clustering al-
gorithm was proposed. In fact, k-sp is a spk-means variant
that challenges the use of centroids as cluster prototypes in
favor of the synthetic prototypes, although the former are
optimal w.r.t. to Eq. 4 or the standard mean squared er-
ror function. The key-idea that justifies this choice is that
the usual randomized initialization approaches provide in-
homogeneous clusters to spk-means. If such impure clusters
are represented optimally by the centroids, then due to the
high-dimensional and sparse space, the inhomogeneity will
be retained by the cluster representation and the procedure
will converge to a particularly bad solution. Instead, more
robust and selective prototypes should be considered during
the early clustering iterations, and the centroids should be
used later as a final refinement step on already quite homo-
geneous clusters.

On a technical level, a synthetic prototype of a cluster
is constructed as follows. Starting from the medoid object
m, a percentage of the p

docs
documents in the cluster that

are nearest to m are selected and their centroid is set as
the synthetic representative. In addition, a feature filter-
ing is optionally applied on that representative, where only
the non-zero entries of its vector that correspond (in sum)
to a percentage of pterms of the initial vector magnitude is
retained. Intuitively, the synthetic prototype favors the rep-
resentation of documents belonging to the same class to that
of the medoid object. Therefore, if there are documents of
two or more classes in a cluster, then its synthetic prototype
will tend to represent the dominant class and suppress the
representation of documents farther from the medoid which
may belong to minor classes mixed in the cluster.

Note that it can be decided for the construction of syn-
thetic prototypes to be more refined, by applying an incre-
mental approach. In this case, instead of selecting directly
the set corresponding to the p

docs
from the cluster mem-

bers, this set grows gradually around the cluster medoid
[11]. However, this improvement comes with the cost of ad-
ditional parameters and was not used in this work.

2.3 Burst Detection
The rapid increase of a term’s frequency of appearance,

defines a term burst in the text stream. Thus, a term is
considered as bursty when its frequency is encountered at an
unusual high rate. The identification of bursts is known as
burst detection procedure. Among the proposed methodolo-
gies [23, 26, 4], a widely-used one is the two-state automaton
proposed by Kleinberg [13]. It assumes that the documents
arrive in T consecutive batches, as in Eq. 1. Let |st| express
the total number of documents in the batch arriving at the
t-th time window (i.e.

∑T
t |st|=N), and |stj | be the number

of documents of that batch which contain the term fj (i.e.



∑T
t |stj |= |Dj |). The automaton has two states, one with

low emission rate p0 = |Dj |/T , which is actually an expecta-
tion under the uniform distribution hypothesis, and another
one with higher rate p1 =α · p0, where α> 1 is a parameter
and makes the detection more selective.

In this model, each (st, stj) is considered to be an output
symbol that is produced probabilistically according to the
internal state of a hidden Markov model. Let qt ∈ [0, 1] the
state of the automaton at time t, and a conversion cost for
state transition, which is γ log(T ) when qt<qt+1, and zero
otherwise. In other words, the model considers a cost for
passing in more bursty states, while the opposite is cost-
free. Consecutive appearances of state 1 (bursty state) are
considered as bursty moments of the term. Provided a se-
quence of (st, stj) tuples, the goal of burst detection is to
find the optimal state sequence (q1, ..., qT ) that minimizes
the cost for each qt to be at the i-th state (i∈ [0, 1]) of the
automaton:

σ(i, |stj |, |st|) = −ln
[(
|st|
|stj |

)
p
|stj |
i (1− pi)|st|−|stj |

]
. (5)

The state transition sequence that minimizes the above cost
function is derived using the Viterbi approach for dynamic
programming. The length of a burst is the time distance
between the first and the last consecutive bursty moment,
i.e. t2− t1 + 1. As for the burst weight of a term fj which
occurs in a specific time interval [t1, t2], that is:

w
[t1, t2]
j =

t2∑
t=t1

(σ(0, |stj |, |st|)− σ(1, |stj |, |st|)). (6)

The weight is non-negative and expresses the reduction in
the cost incurred by the use of state p1 instead of p0. Note
that there is no efficient automatic way provided for tuning
the two parameters α and γ, which should be set manually.

To simplify our notations, we denote as w
(t)
j the burst

weight of term fj for the time interval that includes a point

in time, t (also as w
(t)
j =w

(t)
j /maxi,t w

(t)
i , the normalized

burst weight). Also, we denote the set of bursty terms as B
and we define as τj the bursty time period of term fj , i.e.
the union of its bursty time intervals. Apparently it holds:

w
(t)
j > 0,∀t∈ τj , and also fj ∈B iff τj 6= ∅.

2.4 Bursty Document Representations
In [9] the bursty feature representation has been intro-

duced that extends the typical VSM-BOW approach with
the inclusion of a binary weight for each term. The basic
idea is that the weight of a bursty term should increase for
the vectors of documents appearing during that term’s burst

period. Let d
(t)
i a document that appears at time t in the

stream, then its bursty vector representation (B-VSM) is:

d
(t)
ij =

{
1{tf ij > 0}+ δw

(t)
j , if t ∈ τj ;

1{tf ij > 0}, otherwise,
(7)

where 1{·} is the indicator function, and δ > 0 is a constant.
In the follow-up work [8], the performance of the previous

idea is tested using the TFIDF weighting scheme by consid-
ering both the normalizedwj and unormalized burst weight
wj , ending up with five B-VSM variants. The first two vari-
ants modify the document vectors while keeping them in the

original V -dimensional space:

(SAB) : d
(t)
ij =

{
tfidfij +w

(t)
j , if fj ∈B;

tfidfij , otherwise,
(8)

(SMB) : d
(t)
ij =

{
tfidfij · w(t)

j , if fj ∈ B;

tfidfij , otherwise.
(9)

However, the rest B-VSM models use only the bursty feature
space B, i.e. di = [di1, ..., diB ]>, to represent a document:

(BAB) : d
(t)
ij = tfidfij +w

(t)
j , (10)

(BMB) : d
(t)
ij = tfidfij · w(t)

j , (11)

(BT) : d
(t)
ij = tfidfij . (12)

The experimental results in [8] revealed that the B-VSM
could improve significantly the clustering result in terms of
recall and precision measures.

The work in [25] follows a similar concept with [8, 9],
aiming to retrospectively mine events from text streams by
means of clustering. Its major contribution is the Burst-
VSM representation that filters out all non-bursty terms and
represents the documents in the B-dimensional bursty fea-
ture space using the original term weights:

(Burst-VSM) : d
(t)
ij =

{
tfidfij , if t ∈ τj ;
0, otherwise.

(13)

In that work, the bursty terms were inferred using a varia-
tion of Kleinberg’s two-state automaton on a sliding window.

Finally, a closely related method to the aforementioned
works is [10]. Assuming that traditional VSM cannot cap-
ture the temporal aspect of text streams, the bursty feature
space is explored either with the Kleinberg’s two-state au-
tomaton or using the burst detection method proposed in
[14]. Their major contribution is the bursty distance mea-
surement to calculate the similarity between a pair of doc-
uments, as well as the local burstiness score, based on the
local term co-occurrence.
Employed B-VSM representation. In our method which
is presented next, we used the Kleinberg’s two-state automa-
ton to detect the set of bursty terms B that returns the burst
weight wj and burst time period τj (union of time intervals)
of each term. Based on the results of comparative exper-
iments, we concluded that the following burst-reweighing
scheme works better for the text streams we used:

d
(t)
ij =

{
tfidfij · w(t)

j , if t ∈ τj ;
tfidfij , otherwise,

(14)

After applying the above transformation to the initial cor-
pus representation X, we obtain the representation XB that
takes into account term burstiness.

3. CBTC: CORRELATED BURSTY TERM
CLUSTERING

The burst period of a term implies the time intervals dur-
ing which the events associated with it are trendy and a lot of
related documents are being published around those points
in time. All these events can be part of the same topic.
Furthermore, and according to Kleinberg’s burst detection



Algorithm 1 Initialization of spk-means with the CBTC.

function CBTC (X̂, p
docs

, pterms , k, k
′, A)

input : X̂ is the document matrix with row vectors,
p
docs

, pterms are parameters for the synthetic

prototype construction, k and k′ the starting
and desired number of clusters (k′ ≥ k), and A the
bursty term correlation matrix

output : R= {r1, ..., rk} the set of final cluster prototypes,
C = {c1, ..., ck} the sets of documents assigned
to each cluster

1: C(f) ← SegmentTermGraph (A, k′) // see Alg. 2

2: {SP , C(b)} ← ConstructBurstySP (C(f), X̂, p
docs

, pterms )

// see Alg. 3

3: {SP} ← MergeClusters (C(b), SP , k, p
docs

, pterms )

// see Alg. 4

4: {R, C} ← spkmeans (SP , X̂, k) // see Sec. 2.1
5: return (R, C)

method, the larger the number of documents containing the
candidate term, the larger the probability for detecting it as
bursty. Thus, bursty terms could indicate the most impor-
tant documents for the topic. We regard as important a doc-
ument that is close to the centroid (or medoid) of documents
that belong to the same topic (ground truth cluster). Such
documents are in essence good quality initial centroids that
could improve the performance of algorithms of the k-means
family which depend on the selection of the initialization.

Our contribution to the discussed text stream clustering
problem is packed in a method called Correlated Bursty
Term Clustering (CBTC) for the selection of the k initial
centers, from which, spherical k-means (spk-means) may
then search for a local optimum. The proposed method is
deterministic and, thus, not sensitive to random initializa-
tion on which spk-means relies.

The CBTC approach stems from the philosophy of feature-
based methods that define clusters by grouping the vocabu-
lary terms. Suppose we wish to cluster the documents of a
text stream into k clusters, each one being a topic for which
one or more semantically similar events create bursts of in-
terest over time. The pseudocode of our method is presented
in Alg. 1 where its main steps are: i) Initially, we create k′

groups of bursty terms (k′>k, e.g. k′= 2k) by segmenting
the so-called bursty term correlation graph using the spectral
clustering algorithm [16] (Sec. 3.1). ii) Then, we compute the
k′ representatives of the document sets related with each of
the term clusters, in the original V -dimensional space, using
the synthetic prototypes procedure (Sec. 3.2). The represen-
tatives are computed from the set of documents (DocsB)
that contain the bursty terms and are published during their
burst intervals. iii) Next, we reduce the number of clusters
from k′ to k using an agglomerative approach that merges
iteratively the most similar clusters according to the cosine
similarity of their synthetic prototypes (Sec. 3.3). iv) Fi-
nally, the synthetic prototypes are used to initialize spk-
means and get the final clusters and their centroids.

3.1 Bursty Term Correlation Graph
In order to cluster the bursty terms, we should first de-

fine the similarity between them. To this end, we create a
term correlation graph based on the co-occurrences of bursty
terms. In literature, there are several works following this
concept, either for event detection or topic summarization.

In [17] an event detection algorithm was proposed using a
keyword co-occurrence graph. In [19] a graph is created,
from noun phrases and name entities, and then a community
detection algorithm was applied to detect events. However,
none of these works considers term burstiness that we focus
herein. Furthermore, in [15] a network is built for a specific
trending topic, where nodes denote bursty and non-bursty
terms and each edge denotes a co-occurrence relation. In
addition, in [21] the problem of bursty event tagging was
studied, where an event is described by a set of tags. The
authors observed that tags from various Web sources re-
flect the users’ interests over time, thus by applying graph
segmentation techniques one could detect bursty events. Fi-
nally, a more sophisticated method for event detection from
social text streams (e.g. blogs and exchanges of emails) is
presented in [24].

Our bursty term correlation graph is represented by an
adjacency matrix A∈RB×B , where nodes correspond to
bursty terms while each edge aij between two nodes, fi and
fj , is added under two conditions: i) Co-burstiness: their
burst time periods, τi and τj , do overlap, i.e. τi ∩ τj 6= ∅.
ii) Co-occurrence: during the overlapping period, the terms
fi and fj do co-occur in at least one document. Let h
be a function that maps a set of documents to the set of
their timestamps, then, the above conditions are satisfied if
h(Di∩Dj)∩(τi∩τj) 6= ∅. Similarly to [5, 20], we define edge
weights by the following formula:

aij =

{
1
2

(
|Di∩Dj |
|Di|

+
|Di∩Dj |
|Dj |

)
, if h(Di ∩Dj) ∩ (τi ∩ τj) 6= ∅;

0, otherwise,

(15)
where Di is the set of documents that all include the term
fi and are published during the time period in which fi is
bursty. Zero degree vertices are eliminated from the final
graph on which we apply the standard spectral clustering
algorithm [16] to segment the bursty terms into k′≥ k non-
overlapping clusters. From the result, we discard any groups
with less than two terms.

3.2 Cluster Representatives
The second stage of our algorithm starts by determining

the set of documents that are associated with each of the k′

groups of bursty terms. More specifically, given a group of
bursty terms, a document is included in the corresponding
document set Docs if it contains at least one of the bursty
terms of that group and has been published during the burst
time period of any of those terms. Next, a cluster repre-
sentative is computed for each of the k′ sets Docs, using
the robust synthetic prototypes approach [11] instead of the
traditional approach that is based on centroids or medoids.
This process is presented in Alg. 3.

Algorithm 2 Segmentation procedure on the bursty terms.

function SegmentTermGraph (A, k′)
input : A is the bursty term correlation matrix,

k′ the desired number of groups

output : C(f) = {c(f)1 , ..., c
(f)
k′ } the segmentation solution

with k′≥ k groups of bursty terms

1: C(f) ← SpectralClustering (A, k′)

2: C(f) ← C(f) \ {
⋃
c
(f)
i , ∀i∈ [1, k′] s.t. |c(f)i |< 2}

3: return (C(f))



Algorithm 3 Construction of bursty synthetic prototypes.

function ConstructBurstySP (C(f), X̂, p
docs

, pterms )

input : C(f) is the segmentation of SegmentTermGraph(),

X̂ the document matrix with row vectors,
p
docs

, pterms are the parameters for the synthetic

prototype construction
output : SP = {sp1, ..., spk′} the set of synthetic prototypes,

C(b) = {c(b)1 , ..., c
(b)
k′ } the documents clusters

corresponding to the groups of bursty terms C(f)

let : fj the j-th term (here fj ∈B),

k′= |C(b)| the number of clusters,
Dj the set of documents containing the term fj ,

X̂Docs the submatrix of X̂ with the rows
that correspond to the documents in the set Docs,
ConstructSP() constructs a synthetic prototype,
AssignToClosest() assigns the documents of a set
to the closest of the prototypes provided

1: DocsB ← �
2: for i= 1...k′

3: Docs ← �
4: for each fj ∈ c

(f)
i

5: Docs ← Docs ∪Dj

6: end for
7: DocsB ← DocsB ∪Docs
8: spi ← ConstructSP (X̂Docs , pdocs , pterms )

9: end for
10: C(b) ← AssignToClosest (X̂Docs , SP)

11: return (SP ,C(b))

The reasoning behind the choice of synthetic prototypes
is that: i) the set Docs may contain a small number of doc-
uments, ii) the high-dimensionality and sparsity of the data,
and iii) the examined set could possibly contain documents
from different topics, therefore we need a robust method able
to deal with the overlap and to compute the representative
for documents of the dominant class in Docs set. All the
above fit well with the setting for which the synthetic pro-
totypes approach has been proposed and shown to be more
efficient compared to traditional text cluster prototypes [11].
At the end of Alg. 3, k′ synthetic prototypes are constructed
representing the k′ document clusters that were previously
formed by the graph segmentation of Sec. 3.1.

3.3 Agglomerative Cluster Merging Step
At the last stage of CBTC method in Alg. 1, and before

applying spk-means, the number of clusters k′ in which the
document set DocsB has been split, is reduced to the desir-
able final number k using agglomerative clustering. At each
iteration of Alg. 4, the pair of clusters with the most similar
synthetic representatives are merged forming a new cluster.
Each time, the new synthetic prototypes of the clusters are
computed, and the procedure terminates when the number
of formed clusters becomes equal to the desired k.

4. EXPERIMENTS

4.1 Datasets
In our experiments, we used 5 different text datasets.

D1 and D2 are subsets of the 20-Newsgroups (20NGs) cre-
ated by choosing randomly 100 documents from each of the
selected categories. D3 is a version of the Reuters-21578
(Reuters) benchmark collection that contains 100 randomly
selected documents from each of the 9 top-sized categories,

Algorithm 4 Agglomerative cluster merging step.

function MergeClusters (C(b), SP , k, p
docs

, pterms )

input : C(b), SP are the output of ConstructBurstySP(),

k is the final number of clusters to reduce set C(b),
p
docs

, pterms are for the SP construction

output : SP the synthetic cluster prototypes
let : ClosestPrototypes() that returns the indexes of

the two most similar prototypes in a given set

1: k′ ← |C(b)|
2: repeat
3: {s, u} ← ClosestPrototypes (SP)

4: c
(b)
su ← c

(b)
s ∪ c(b)u

5: (C(b) ← C(b) \ {c(b)s , c
(b)
u }) ∪ c

(b)
su

6: spsu ← ConstructSP (csu, pdocs , pterms )

7: SP ← (SP \ {sps, spu}) ∪ spsu
8: k′ ← k′ − 1
9: until k′ == k

10: return (SP)

and all the documents of the 10th largest category as they
are less than 100. D4 is a subset of TDT5 text collection [7]
that originally contains 250 topics gathered form 15 differ-
ent newswire sources between April and September of 2003.
The 75% of the topics are monolingual (English, Arabic or
Mandarin Chinese). From this dataset we keep the English
documents having single category labels. From the result-
ing categories, we consider only those with more than 50
documents. D5 is a subset of GoogleNews dataset [1] that
contains English articles from the Technology category. D5
contains the classes with more than 20 documents and we
extract the main content from each article. Details about
this dataset and the way it was originally annotated can be
found in [12].

For the preprocessing of each raw text collection, we use
a standard two-step protocol: i) first, stop-words, numbers
and alphanumeric terms are eliminated, and then, ii) Porter’s
stemming algorithm [18] is applied, in order to map word
terms to its canonical stems. The derived stems constitute
the final vocabulary of the text collection. This process is
performed using the toolkit in [22].

The size of the vocabularies is reduced using a threshold-
ing approach on the term document frequency (term sup-
port). Specifically, for datasets D1-D3, terms appearing in
less than 5 documents are discarded, while the respective
threshold for D4 and D5 is set to 3. For each of the latter
two datasets, we compute three quantiles dividing the dis-
tribution of terms document frequency in three equal parts.
We then exclude the two side parts that correspond to terms
with very high and very low document frequency and we
keep the rest of the terms. After the previous preprocessing,
documents with no terms are also discarded. The character-
istics of the final datasets are presented in Tab. 1 and details
about the selected topics are presented in the Appendix.

For D4 and D5, the provided timelines of the TDT5 and
GoogleNews datasets are used, respectively; documents pub-
lished on the same day are assigned in the same batch. How-
ever, for 20NGs and Reuters datasets we do only make use
of the original recorded time-order of documents. Then, we
implement a simulation method for the generation of the
final streams. As we describe next, this allows for control-
ling the detection difficulty in the generated stream (i.e. the
overlap of topic bursts over time).



Text characteristics Stream characteristics

Name Classes N Balance V Vi T B |si| Hs

D1 10 1000 1 2352 45.89 30 354 33.3 3.030 ± 0.918
D2 10 1000 1 2310 44.54 30 381 33.3 3.030 ± 0.918
D3 10 993 0.93 1566 44.16 30 350 33.1 3.028 ± 0.831
D4 30 4972 0.06 4717 21.54 183 4020 23.8 2.053 ± 0.581
D5 11 268 0.43 1298 59.07 31 400 8.6 0.237 ± 0.543

Table 1: Text and stream characteristics of the datasets used.

− N denotes the number of documents, Balance the ratio of the smallest to the largest
class, V the size of the vocabulary, and V i the average document vocabulary size.

− T is the number of time windows, B the number of bursty terms, |si| the average
number of documents per window, and HS the temporal topic entropy.

Quantifying stream complexity . Moreover, we introduce
a supervised metric, the temporal topic entropy HS of the
stream S, to quantify the “stream complexity” of real or ar-
tificially generated streams. In particular, HS measures the
mean entropy of the topic labels observed in each of the T
non-overlapping time windows (batches):

HS =
1

T

T∑
t=1

[
−
∑
i

n(C∗ti )

N t
· log2

n(C∗ti )

N t

]
. (16)

In the above formula, N t is the number of documents in the
t-th batch and n(C∗ti ) the number of documents out of those
that belong to class C∗i . HS gives large values when there is
a uniform mixture of topic labels in each batch, which would
imply high stream complexity since the timestamps would
indeed carry very little useful information, and a zero value
when only one topic appears in each batch.
Text stream generator . In order to artificially gener-
ate streams with realistic topic bursts, we have at our dis-
posal the document-to-class labeling and the time ordering
in which these documents were originally recorded. Hence,
our task is not to create text content, but only to assign
proper random timestamps to the documents while respect-
ing their original time ordering. The major considerations of
our approach are: i) Due to the duality of documents-terms
space, it is expected for bursts of relevant documents to also
create term bursts over time. ii) It is reasonable to assume
that if a topic presents a number of bursts of attention at
distinct points in time, then, starting from the beginning of
such a burst, the time interval after which each document
appears follows an inverse exponential law. Note that this
latter, simulates bursts of peak-and-fade out shape whereas,
more generally, one may consider a fade in phase as well.

The stream generation process described next is simple
and straightforward. Part of the user-specified parameters
are the desired length of the stream timeline T (i.e. time
windows) and the number of topics k. For each topic, the
generator first decides about the number of bursts to cre-
ate in a range [1, burstsmax], their points in time [1, 0.8T ]
which are not let be very close to the end of the stream, the
number of documents in [rdmin, rdmax] each burst has, and
the mean value of the exponential distribution following each
burst in the range [1/λmin, 1/λmax]. The parameter initial-
ization uses a uniform random selection of values in the re-
spective valid ranges. Then, a timestamp is assigned to the
documents according to the exponential distribution charac-
terizing its topic. As for the rest of the documents that do
not belong to any burst, those are spread uniformly in the
time period between the first burst of their topic and the end

Parameter Value / Selection range

T 30
λ [0.2, 0.9]

#bursts per topic {1, 2}
%docs in bursts [0.7, 0.9]

Table 2: Parameters used in our stream generator.

of the stream. For each of the D1-D3 datasets, we generated
one stream using the setup presented in Tab. 2. Notewor-
thy, we observed relatively small differences when compar-
ing the clustering results on multiple generated streams per
dataset. Two of the generated streams are illustrated in the
Appendix.

4.2 Experimental Protocol
For the evaluation of the CBTC method, we conduct ex-

periments on the five text streams described previously. We
consider both representations X and XB (see Sec. 2), where
X is the traditional BOW representation, and XB is the
bursty representation of the corpus. For each representa-
tion, spk-means is initialized either randomly or using the
proposed approach. The final number of clusters k is set
equal to the known number of topics in each dataset.

4.2.1 Evaluation Metrics
The evaluation is based on three supervised measures,

with values in the range [0, 1], that are positively correlated
with the clustering quality (indicated by the ↑ in Tab. 3), i.e.
higher values indicate better solution. For the notations,
let N be the total number of documents in the dataset,
C = {c1, ..., ck} be the clustering solution, C∗= {c∗1, ..., c∗k}
be the ground truth documents classes, ni be the number of
documents in ci, n

∗
i be the number of documents in c∗i , nij

be the number of documents that are clustered into cj and
also belong to c∗i .
Purity . Purity can be interpreted as the classification ac-
curacy, if all the samples of a cluster are predicted to be
members of the dominant class:

Purity =
1

N

k∑
j=1

max{nij}. (17)

F1-measure. This is the harmonic mean of precision P and
recall R. Specifically, P = TP

TP+FP
and R= TP

TP+FN
, where

TP, FP, and FN denote the True Positive, False Positive,
and False Negative observations, respectively:

F1 = 2
P ·R
P +R

. (18)



VSM representation (X) B-VSM representation (XB)

Dataset Purity↑ F1↑ NMI↑ Purity↑ F1↑ NMI↑

D1

X (avg.) 0.419 0.423 0.365 XB (avg.) 0.444 0.479 0.410
(best) 0.510 0.524 0.457 (best) 0.562 0.573 0.490

X-3k 0.580 0.596 0.578 XB-3k 0.602 0.603 0.558
X-2k 0.628 0.658 0.594 XB-2k 0.626 0.653 0.576

D2

X (avg.) 0.503 0.515 0.439 XB (avg.) 0.508 0.546 0.451
(best) 0.571 0.580 0.491 (best) 0.611 0.622 0.535

X-3k 0.684 0.712 0.633 XB-3k 0.684 0.700 0.618
X-2k 0.714 0.714 0.619 XB-2k 0.711 0.730 0.628

D3

X (avg.) 0.661 0.649 0.645 XB (avg.) 0.710 0.710 0.686
(best) 0.771 0.774 0.745 (best) 0.796 0.805 0.768

X-3k 0.719 0.744 0.703 XB-3k 0.751 0.759 0.745
X-2k 0.774 0.787 0.765 XB-2k 0.774 0.792 0.766

D4

X (avg.) 0.500 0.457 0.545 XB (avg.) 0.518 0.473 0.584
(best) 0.564 0.511 0.587 (best) 0.614 0.556 0.641

X-3k 0.689 0.635 0.704 XB-3k 0.701 0.638 0.718
X-2k 0.678 0.622 0.712 XB-2k 0.688 0.625 0.722

D5

X (avg.) 0.444 0.441 0.369 XB (avg.) 0.720 0.713 0.710
(best) 0.557 0.566 0.474 (best) 0.794 0.793 0.772

X-3k 0.716 0.742 0.650 XB-3k 0.828 0.837 0.791
X-2k 0.522 0.531 0.504 XB-2k 0.623 0.647 0.658

Table 3: RandInit vs. CBTC initializations – results on the D1-D5 datasets using spk-means.

Normalized Mutual Information. This metric divides
the Mutual Information measure to the maximum between
cluster and class entropy:

NMI =

∑ nji

N
log2

nij
N

n∗
i

N
·
nj
N

max{H(C), H(C∗)} . (19)

4.3 Results
In this section, we develop a comparative evaluation for

the proposed CBTC method (see Alg. 1 in Sec. 3). Our aim
is to study the performance of CBTC in both the traditional
BOW representation X (Eq. 2), as well as the bursty term
representation XB (Eq. 14). We compare against the ran-
domly initialized spk-means (RandInit), where we conduct
100 runs for each dataset from random initializations and
report the average metric values (avg.) for all 100 solutions,
as well as the metric values (best) corresponding to the so-
lution with the highest cohesion in the 100 runs. Recall that
for our method a single run suffices for each dataset, since
there is no aspect of randomized initialization.

Apart from the desired final number of clusters k, the over-
all CBTC method that we propose depends on two kinds of
parameters: i) The parameters of the burst detection pro-
cedure, namely Kleinberg’s two-state automaton, α= 3 (as
suggested in [13]) and γ= 1 in order to identify short rather
long bursts. ii) The parameters k′, p

docs
, pterms of the

CBTC initialization approach. The first out of the latter
parameters is set to either 2k or 3k. The other two are
involved in the construction of synthetic prototypes (the
ConstructSP() in Alg. 3) and are set to 0.5 and 0.4, re-
spectively, in all experiments. This actually means that
when constructing a synthetic prototype, only 50% of the
documents of the cluster will be used, and similarly only
the terms corresponding to about the 40% of the magni-
tude of the initial vector representation. Note also that
the construction of each synthetic prototype can be decided
to be more robust and refined by applying an incremental

construction approach around the cluster medoid (Sec. 2.2).
However, this feature comes with the cost of additional pa-
rameters which is here avoided as we select in just one step
the p

docs
% of the documents in the cluster that are around

its medoid to form the synthetic prototype.
At this point, we should note that for D4, we used all the

term bursts identified by Kleinberg’s two-state automaton.
Contrary, for the rest of the text streams which are also
shorter, the CBTC method performed better when for each
term only the largest burst weight over the whole stream
duration T was considered.

In the results presented in the table Tab. 3 for each dataset,
the first two rows correspond to the randomly initialized
spk-means (average and best), while the last two rows cor-
respond to CBTC method that use either k′= 2k or k′= 3k
starting clusters obtained from spectral graph segmentation.
As it is observed from the results for D1 and D2 datasets, the
superiority of our method is clear and gives relatively simi-
lar and stable results for the two representations X and XB.
Using CBTC initialization, X seems slightly better in D1,
whereas XB in D2. In D3, and only in terms of the bursty
term representation XB, there is the single case where our
method does not achieve better results than the best solution
of spk-means with XB representation. However, we observe
that the deterministic CBTC approach performs much bet-
ter, according to all three metrics, when compared to the
average result of the RandInit spk-means runs.

In D4, for both representations, we can see that our method
provides much better results than spk-means. Similarly in
D5, which we should underline that is a smaller collection
with less imbalanced clusters than D4, and with the lowest
stream entropy HS among the tested datasets (see Fig. 1 in
the Appendix). In any case, CBTC has the important ad-
vantage of deterministic initialization and seems to provide
solutions of good quality in a single run of spk-means.
Additional findings. We also comment on experiments we
conducted as part of our empirical validation, but decided
not to report them in detail. First, we tried hierarchical ag-



glomerative clustering as main procedure (note that CBTC
uses a modified such procedure internally). However, as it
has been observed in series of papers of the field (e.g. [11]),
this approach was quite not competitive in our datasets’
high-dimensional and sparse setting as the merging error at
low level is usually non-negligible and cannot be corrected
at higher level as clusters are nested.

In addition, we tested k-means++ [3] that performs care-
ful randomization using data objects as seeds. Although
this consistently improved the average performance in most
cases, it did not manage to outperform the best solution
already found by RandInit with 100 restarts. This is not
unexpected as, for the scale of the datasets we used (deter-
mined by N , V , and k values), the 100 random initializations
should be already enough to explore large part of the solu-
tion space. Important to clarify the difference that CBTC
does seek for object seeds, instead, it follows a sophisticated
deterministic constructive approach using multiple data ob-
jects for each initial centroid.

5. CONCLUSIONS
In this work, we proposed a novel approach for using term

burst information in text stream clustering. In addition to
the reweighting of independent bursty term weights (term
burstiness), we aimed at improving the document represen-
tation by taking advantage of the fact that most of the im-
portant documents for a topic are published during time pe-
riods in which many of the main topic terms are simultane-
ously bursty (co-burstiness). This is a key feature to discover
characteristic documents for the topics. These documents
are subsequently exploited in order to deterministically cre-
ate efficient initial cluster representatives using the robust
synthetic prototypes approach in combination with agglom-
erative clustering. Comparative experimental results on five
text stream datasets indicate that the proposed CBTC ap-
proach achieves good clustering performance for both non-
bursty (X) and bursty (XB) document representations, de-
spite that it requires only a single run of spherical k-means.

Future work could focus on the one hand on the auto-
mated estimation of the number k of clusters (topics), which
is now given in advance. Additionally, it would be interest-
ing to test the performance of our method on larger datasets
derived from social networking platforms.
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(a) Generated stream for D1 dataset
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(b) Generated stream for D3 dataset
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(c) Original stream for D5 dataset

Figure 1: Indicative text streams: the generated
streams for D1 and D3 datasets (note: the stream of
D2 is similar to that of D1), and the original timeline
of D5. Different colors indicate the topics over time.

APPENDIX
Here, we provide details for topics we sampled to create
the datasets D1-D5. Moreover, Fig. 1 visualizes the origi-
nal timeline of D5, and the topic timelines generated (see
Sec. 4.2) for datasets D1 and D3 that do not have document
timestamps.

Table 4: D1-D3 datasets – Selected topics.

Dataset Source Topic description

D1 20NGs graphics, windows.misc, pc.hardware,
mac.hardware, windows.x, autos,
motorcycles, politics.guns,
politics.mideast, politics.misc

D2 20NGs atheism, graphics, ibm.pc.hardware,
forsale, autos, sport.baseball,
crypt, religion.christian,
politics.guns, politics.misc

D3 Reuters acq, corn, crude, earn, grain, interest,
interest, money-fx, ship, trade, wheat

Table 5: D4 dataset – Selected topics.

id Topic ID Topic description (Source: TDT)

1 55005 Sosa ejected, cheating suspected
2 55012 National do not call registry
3 55016 Gay bishop
4 55029 Swedish foreign minister killed
5 55047 Kobe charged with sexual assault
6 55063 (SARS) Quarantined medics in Taiwan protest
7 55069 Earthquake in Algeria
8 55072 Court indicts Liberian President
9 55076 Protests at 2003 Masters Tournament
10 55078 Looting at Iraqi nuclear site
11 55080 Spanish elections
12 55087 Earthquake in Turkey
13 55089 Liberian former president arrives in exile
14 55090 Blackout in US and Canada
15 55098 Bush and Blair Summit
16 55103 Two Britons among terror suspects
17 55105 UN official killed in attack
18 55106 Bombing in Riyadh, Saudi Arabia
19 55107 Casablanca bombs
20 55109 Israel withdraws troops from Gaza
21 55117 Cambodian elections
22 55118 World Economic Forum in Jordan
23 55125 Sweden rejects the Euro
24 55128 Mad cow disease in North America
25 55155 Chinese submarine accident
26 55166 Suicide bombers hit Moscow concert
27 55181 Palestine: Ahmed Qureia tapped as next PM
28 55200 Iraq: Protection of antiquities
29 55227 Bin Laden videotape
30 55240 US troops fire on Mosul crowd

Table 6: D5 dataset – Selected topics.

id Topic ID Topic description (Source: Googlenews)

1 65 AT&T Unveils shared wireless data plans
2 186 Apple considered investing in Twitter
3 15 Google Nexus 7 tablet goes on sale in US
4 555 VMware buys Nicira for $1.05 billion
5 646 Google unveils price for gigabit Internet service
6 5 Digg acquired by Betaworks
7 252 Microsoft reboots Hotmail as Outlook
8 425 FTC fines Google for Safari privacy violations
9 454 Nokia cuts Lumia 900 price in half to $50
10 19 Apple brings products back into EPEAT circle
11 496 Yahoo confirms 400k account hacks


