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Why are we here?

Short course on Machine Learning for Network Modeling

Planning: 4 dense sessions, 2.5 hours each 

1. Introduction to Graph Theory and Network Science

2. Network models - Static and dynamic graphs*

3. Structure and topology inference

4. Processes and signals over graphs

* Session 2 is going to be given by Fabian Tarissan, CNRS, ENS Paris-Saclay
fabien.tarissan@ens-paris-saclay.fr
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.:: In this lecture

1. Diffusion processes on networks

2. Control of diffusion processes

3. Control of competitive diffusion processes

4. Adding restrictions to the control problem

5. Application: Delay in transportation networks

6. Graph signals

7. Application: Monitoring information cascades in Twitter
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Diffusion Processes on Networks
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Diffusion Processes on Networks

DPs arise in systems with interconnected agents (real or electronic networks)

 each agent has a variable state

 agent behavior depends on, and propagates to, its close environment

 the propagation causes changes in agents’ state according to some “rules”

Basics

Propagating entities: from disease epidemics to… digital and social epidemics

 Epidemiology: diseases/viruses 

 Computer systems: computer viruses, fault cascade, computational errors (e.g. sensor 
networks)

 Social and information networks: information, ideas, rumors, social behaviors…



DPs arise in systems with interconnected agents (real or electronic networks)

 each agent has a variable state

 agent behavior depends on, and propagates to, its close environment

 the propagation causes changes in agents’ state according to some “rules”

Diffusion Processes on Networks
Basics

Propagating entities: from disease epidemics to… digital and social epidemics

 Epidemiology: diseases/viruses 

 Computer systems: computer viruses, fault cascade, computational errors (e.g. sensor 
networks)

 Social and information networks: information, ideas, rumors, social behaviors…

This is what we will talk about



Diffusion Processes on Networks

Depending on the situation, a DP can be desired or undesired

Roughly three directions of research

 Network assessment: worst case analysis, risk/vulnerability 
assessment

 DP engineering: influence maximization, (viral) marketing

 DP suppression and control: containment of viruses, rumors, social 
behaviors, etc., using control actions

Directions of research



Multitude of diffusion models

 no single model describes all possible complex diffusion phenomena

Well-studied models 

 compartmental models from epidemiology (SIS, SIR, SEIR, …)

 other models from statistical physics (e.g. Percolation)

 common characteristic: constant propagation rates

Diffusion Processes on Networks

SIS model

IS

IS R

SIR model

IS R

E

SEIR model

S: susceptible | E: exposed
I: infected      | R: recovered

Diffusion Models

Modern information-oriented models

 Information Cascades, Hawks Processes, …

 Common direction: propagation rates variable in time to model user interest



Example

 uncontrolled SIS process on contact network

Diffusion Processes on Networks
Diffusion Models – SIS demo

β · #infectedNeighbors

δ

Homogeneous
continuous-time 

SIS model
for one node

IS

Watch online: http://www.youtube.com/watch?v=fGSKHxSD-40

 spreading rate β

 node self-recovery rate δ

 adjacency matrix Α

 network state X

 two possible events each time: infection or recovery

http://www.youtube.com/watch?v=fGSKHxSD-40


DP suppression and control using control actions on nodes or edges

Diffusion Suppression and control

Node deletion Edge deletion Resources on nodes

Possible control actions



Dynamic Resource Allocation

DP suppression and control using control actions on nodes

Diffusion Suppression and control
Healing resources on nodes

Resources on nodes

preparatorypreventive corrective

vaccines           antidotes      treatments



Diffusion Suppression and control
Introducing resources

 treatment efficiency ρ

 resource allocation R

β · #infectedNeighbors

δ or δ + ρ

with control

IS

β · #infectedNeighbors

δ

IS

 two possible events each time: infection or recovery

 spreading rate β

 node self-recovery rate δ

 adjacency matrix Α

 network state X

without control

Homogeneous 
continuous-time SIS 
model for one node



Dynamic Resource Allocation (DRA)
A modelling and control framework

DRA objective

Formally a DRA strategy

Constraints
 unlimited resources, disposed at limited constant rate

 limited accumulation of resources on single node

 inability to store resources



Dynamic Resource Allocation (DRA)
Score-based strategies

Score-based DRA strategies

where

Heal the nodes with the top-btot

ranked scores…

 σ(1) = 0 and σ(0) = -∞

Baseline heuristics and LRIE



OPTIMAL Greedy DRA

Derivation
 rewrite the DRA objective according to the Markovian property

 then, a second order approximation

LRIE - Largest Reduction of Infectious Edges

For an infected node i

virality vulnerability

i

infectious edge

j i j

A Greedy Approach for Dynamic Control of Diffusion Processes in Networks,

K. Scaman, A. Kalogeratos, and N. Vayatis, ICTAI 2015.



OPTIMAL Greedy DRA

 Node h is the most central

 Node e and d are the most viral 

 Node e is the least vulnerable (safest)

LRIE - Largest Reduction of Infectious Edges

Toy example

LRIE node ranking

Priority 1:  e  | Se=3-0

Priority 2:  d | Sd=3-1

Priority 3:  f  | Sf=1-2



OPTIMAL Greedy DRA
Demonstration on an artificial contact network

Watch online: http://www.youtube.com/watch?v=xS-0p7h1OeM

http://www.youtube.com/watch?v=xS-0p7h1OeM


Advantages

 brings the intuitive idea of reduction of infectious edges (front)

 optimal greedy, fast and quite efficient

 can adapt to network and/or budget changes

 not difficult to imagine a distributed version

Disadvantages

 ignores macroscopic network properties (e.g. clusters)

 cannot apply coordinated actions

LRIE: pros & Cons



Question to answer

LRIE is particularly elegant but greedy?

Can we do better?



(Global) Priority Planning
Definitions

Priority-order: a bijection

s.t. the position of node    in the order

Priority planning: DRA strategies that are 
based on a priority-order

 limited budget r, max resource per node ρ, 
healing top-q(t) nodes (i.e. left-most)



Global Priority Planning
Graph theoretic properties of a priority-order

Cut at position c:

MaxCut of  :

Cutwidth of G:

Extinction time: 

 non-inf random quantity depending on the DRA strategy

 sub-critical behavior:                ≤ polynomial function

 super-critical behavior: > exponential function

Requirement for designing a strategy: 

 connect the properties of the order    to 



Priority Planning
MaxCut Minimization strategy (MCM)

Toy example

Priority-order with 
minimal MaxCut = 1

 Red vertical line: the front separating the healthy (left) from the 
infected part (right) of the network

 The MaxCut indicates highest vulnerability for the healthy part and 
is the most difficult step of the priority plan

Priority-order with 
MaxCut = 3

Suppressing epidemics on Networks with Treatments of Limited Efficiency,

K. Scaman, A. Kalogeratos, and N. Vayatis, IEEE Trans. on Network Science and

Engineering, 2016.



Theoretical results
How good priority-orders are?



Theoretical results
How good priority-orders are?

healing



Maxcut Minimization (MCM)
MCM Strategy

MCM strategy

 seeks for the priority-order   with the minimum 
MaxCut C*(  ) of edges 

 heals the q(t) leftmost infected nodes in

 uses a relaxation of                                                by 



Maxcut MinimiZation (MCM)
Solving the MLA problem

Learning an ordering for a network

1. find communities in G and order 
them (high-level nodes) with spectral 
sequencing

2. order nodes inside each cluster with 
spectral sequencing, orient to each 
other, and then optimize with node 
swaps internally to clusters

3. apply the swap-based approach again 
to the overall node ordering

2a.

1a.

2c.

2b. or or or or

1b.

3.



Results
Quality of the theoretical bound

 picks orderings at random out of MCM, RAND, MN, LN, LRSR

 various random network models, N = 1,000, q = {1,…100}

 r* was estimated empirically with simulations

Verifying 

r* ≈ 



Results
Experiments on real-networks

GermanSpeedway

N = 1,168 nodes, Ε = 1,243 edges, max(d) = 

12, β=1, δ = 0, q = 1

MaxCut: 650+/-50 RAND, 379 MN and LN, 104 

LRSR, 29 CURE and MCM

OpenFlights

N = 2,939 nodes, E = 30,501 edges,
max(d) = 242, β=1, δ = 0, q = 1

MaxCut: 7,800+/-100 RAND, 7,504 MN and LN,  
6,223 LRSR, 2,231 CURE and MCM



Global Priority Planning
Experiments on real-networks

Subset of Twitter network 
with 81.306 nodes

MCM can remove the 
contagion with ~5 times less 
resources than its best 
competitor !!



Global Priority Planning
Experiments on real network (TwitterNet)



The priority ordering 
remains valid after local 
modifications of the 
network connectivity

Robustness analysis
Experiments on an increasingly perturbed contact network

Contact network in [0,1]2

where each node is connected 
with all nodes in radius r

random priority-order

optimal priority-order

almost all 
original edges 
have been 
changed (σ = 3r)



Question to answer

Are the strategies we have at hand efficient 

in the presence of competition?

Can we do better?

From disease epidemics to… digital and social epidemics



Various studies have identified diffusion and competition in lifestyle 
and social behavior

 Obesity [Wing et al. 2009, Christakis et al. 2007, Hill et al. 2010]

 Smoking [Poulsen et. al. 2002, Christakis et al. 2009]

 Alcohol consumption [Rosenquist et al. 2010]

 Emotions in social networks [Fowler et al. 2009, Hill et al. 2010]

Competitive social Diffusion Processes
Motivation

Features / challenging properties

 SIS-like processes with evidence of competition

 “evidently” complex propagation functions
 non-linear

 with saturation points



Competitive social Diffusion Processes
Motivation

Example: human behavior for alcohol consumption

Christakis et al. 2010.



Related epidemic models

 SISa: includes spontaneous infection
[Hill et. al. 2010]

 S I1I2S:

[Prakash et. al. 2012]

 S I1|2S
[Beutel et. al. 2012]

Modeling competition with SIS
Competitive models from literature



A NOVEL Competitive SIS model
Introducing arbitrary propagation functions and competition

β · #infectedNeighbors

δ or δ + ρ

SIS with control

IS

 with      and      two node-specific 
memoryless propagation 
functions

 … that represent the competing 
positive and negative diffusions

Generalized SIS with 
competition and control

IS



Our Competitive SIS model
Relaxation

Generalized SIS

IS

Assumptions for the propagation 
functions:

 locality

 exchangeability

 Invariance

 They depend only on the node degree di
and on the number infected neighbors ni :

Relaxation



Derivation: By minimizing                        we obtain the gLRIE scoring function

For an infected node i :

Optimal greedy strategy for competition
Generalized LRIE (gLRIE)

viralityvulnerabilityself-recovery + 
receiving local

“social” 
healing

contribution to
local “social” healing

Recovering LRIE:

Interpretation

concerns i the healing of i affects its neighborhood



Sigmoid propagation functions for experimentation : 

 adjustable non-linearity

 adjustable saturation level

Two variations:

 Case A: Dependency only on #infected neighbors (n)

 Case B: Dependency only on the infection ratio (n/d)

Numerical simulations
Examples of arbitrary propagation functions

*

*
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Numerical simulations
Evolution plots for random graphs

from ‘linear’ to non-linear

Erdös-Rényi networks:  N = 1000 nodes, p = 0.001, mean degree 8, 104 simulations

 ,  ,                and 

Case A: ~ to #infected neighbors + no competition



Numerical simulations
Evolution plots for random graphs

Erdös-Rényi Preferential attachment Small world Propagation functions

negative

positive

positive

negative

Case A: ~ to #infected neighbors



Numerical simulations
Evolution plots for random graphs

Erdös-Rényi Preferential attachment Small world Propagation functions

negative

positive

positive

negative

Case B: ~ to %infected neighbors



Results
Real-world networks

Gnutella

8846 nodes 

31839 edges

Heatmaps in the

AUC(gLRIE) / AUC(LRIE) gLRIE convergenceAUC(gLRIE) / AUC(MCM)

no competition no competition no competition

with competition with competition with competition

saturation

sl
o

p
e

(sI, ℓI )-space



Results
Real-world networks

arXiv H.E.Physics

8637 nodes 

24803 edges

Heatmaps in the
saturation

sl
o

p
e

(sI, ℓI)-space

AUC(gLRIE) / AUC(LRIE) gLRIE convergenceAUC(gLRIE) / AUC(MCM)

no competition no competition no competition

with competition with competition with competition



gLRIE pros and cons

Pros
 motivated by social contagions scenarios

 takes into account competition

 arbitrary propagation functions

 Inherits the adaptivity and elegance of LRIE

Cons
 inherits the greediness and lack of co-ordination of LRIE



Question to answer

What about relaxing the requirements of the DRA class of 
resource allocation strategies



Standard DRA

Motivations

 Unrealistic ‘power’ of the administrator

 Play with access and information

Assumption

 access and information are inextricable



Restricted and Sequential DRA

Restricted DRA

Sequential DRA



The sequential selection problem (SSP)
BASIC VERSION

Constraints

Immediate and irrevocable decision 
after each interview

No info about, or control to, the input

Limitations of the classical SSP setting
• Cold start: zero prior knowledge 
• Single-shot problem…



The Multi-Round Sequential Selection Problem, Mathilde Fekom, Argyris Kalogeratos, Nicolas Vayatis, arxiv preprint, 2018

*
*



Warm-starting & multi-round sequential selection processes 

The Multi-Round Sequential Selection Problem, Mathilde Fekom, 
Argyris Kalogeratos, Nicolas Vayatis, arxiv preprint, 2018



Warm-starting & multi-round sequential selection processes 

The Multi-Round Sequential Selection Problem, Mathilde Fekom, 
Argyris Kalogeratos, Nicolas Vayatis, arxiv preprint, 2018



Pluging warm-starting into Sequential DRA

Various strategies
 Hiring-above-the-mean (MEAN) [Broder et al., 2009]: 

Acceptance threshold is the mean of employees                
Goal: grow the company as much as possible while keeping 
maximal the average score of the employee

 Cutoff-based Cost Minimization (CCM) [Fekom, Vayatis, 
Kalogeratos 2019]
Generic algorithm i.e. works with any scoring function
Goal: minimize the expectation of the ranks of the selected

 Warm-starting Dynamic Thresholding (WDT) ) [Fekom, 
Vayatis, Kalogeratos 2019]
Assumes score distribution is known
Optimal acceptance threshold
Goal: maximize the expectation of the scores of the selected

Example on a scale-free network

Sequential Dynamic Resource Allocation for Epidemic Control, Mathilde Fekom,Nicolas Vayatis, Argyris Kalogeratos , CDC 2019.



Discussion

?!


