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Why are we here?

Short course on Machine Learning for Network Modeling

Planning: 4 dense sessions, 2.5 hours each

1. Introduction to Graph Theory and Network Science
2. Network models - Static and dynamic graphs*

3. Structure and topology inference

4. Processes and signals over graphs

* Session 2 is going to be given by Fabian Tarissan, CNRS, ENS Paris-Saclay

fabien.tarissan@ens-paris-saclay.fr



mailto:fabien.tarissan@ens-paris-saclay.fr

How we’ll get through this?

Attend the courses

Do a short project

" |t can be something around using the tools of the course for a

problem of your main discipline or a thematic you’d like to pursue in
the future

" The subject and perimeter of each project should be discussed
" Deliverables: report + codes (Matlab, R, Python, ...)



o In this lecture

How to define structure when studying networks
Why network ‘structure’” matters
Community detection

BowoN e

. Possible projects



Structure in Network Science



Structure in networks

= Macro-level:
= Degree distribution
= Small-world phenomena (i.e. short diameter)
= # Connected components
= Network model

= Meso-level:
= Motifs (e.g. triads, cliques, cores, ...)
= Group behavior (for dynamic graphs)
= Structural holes / weak ties
= Community structure

= Micro-level:
Node-user modeling

Distant cousins

Link analysis ... qualitative
Network analysis ... quantitative

= Static: reciprocity, node’s relation to communities: hub, internal, interface nodes, ...

= Dynamic: Actions (for dynamic graphs)



Recall: Direct vertex connectivity

W ®

non-connected

W—® W—® W—®

simply connected one-way connected two-way connected
(reciprocity)




Meso: Graph motifs

Graph motifs are statistically significant sub-graphs or
patterns existing in a graph

= Very complicated to work with large motifs

= Usual analysis goes up to motifs of 3 to 5 nodes

Clique is a complete (sub)graph of vertices that is totally
connected (i.e. complete) — ... restrictive!!

Clique relaxations

k-cligue is a set of vertices among any pair of which the
distance (shortest path) < k

k-club (or k-plex) is a set of vertices that has diameter < k

star motif

clique

Clique relaxation:
the paths can pass
from anywhere in
the graph, not just
the induced
subgraph 8



Meso: Graph motifs

Examples

= {2,3,4}is a 1-club (also regular clique)
={1,2,4,5,6}is a 2-club

={1,2,3,4,5} is a 2-clique but not a 2-club

(Note: Ain this case we consider the 5 vertices as part of the
full graph amd therefore 1 is 2 hops away from 5)

Clique relaxation:
the paths can pass
from anywhere in
the graph, not just
the induced
subgraph




Meso: Graph motifs

The 4 possible undirected triads

Triads are motifs that can be formed

O @
between three vertices /\ i E
O @) Q———©0
2 3 4

Labeling undirected triads can done using /
the numbering 1...4

o Also a clique
* label — 1 = # edges in triad

10



M eso: G 'd p h mQtifS The 16 possible directed triads

A APV AN

Labeling undirected triads can be done 1-008 2-012 3-102 4-021D

= either by the numbering 1...16

Q @
= or by using a format xyz / \ /\. :klo :klo

" x — # pairs of vertices connected with 5 - 021U 6-021C 7-111D 8- 111U
bidirected edges

[
= y —# pairs of vertices connected with i \ /\ /i A
one-direction edges g > 0 d——o0

. . 9-030T 10 - 030C 11-201 12-120D
= z—# non-connected pairs of vertices

= When unclear, use also one letter: .

Down, Up, Cyclic, Transitive Q O/;l@ g @

13- 120U 14 - 120C 15-210 16 - 300



Meso: Graph motifs

Transitivity in triads

If there are edges u = vand v = w,
then there exists also the edge u - w

Labeling undirected triads can be done
= Triads 9, 12, 13, 16 are transitive

= Triads 6, 7, 8, 10, 11, 14, 15 are
intransitive (... to different levels)

= Triads 1, 2, 3, 4, 5 are vacuously
transitive (i.e. cannot be categorized)

The 16 possible directed triads

O

1-003

ASAN

5-021U

VANWAN

9-030T

L

13-120U

2-012

6-021C

10 - 030C

A4

3-102

N

O+e———=0O
7-111D

/.

11 - 201

VANRRVAN

14 - 120C

156-210



Meso: Graph cores

——— -
- g

A k-core is a maximal connected (sub)graph, "
whose vertices have at least degree k (to
vertices that belong or not to the core)

= Cores do not respect density!!

13



Meso: Graph cores

A k-core is a maximal connected (sub)graph, e
whose vertices have at least degree k (to o “s
vertices that belong or not to the core)

= Cores do not respect density!!

Graph degeneracy analysis
40

35 ——Core size ——(k-1)-core - k-core

30

25

20

15

10

5

0
0-core 1-core 2-core 3-core 14



Meso: Graph cores

A k-core is a maximal connected (sub)graph,
whose vertices have at least degree k (to
vertices that belong or not to the core)

= Cores do not respect density!!

Graph degeneracy analysis
40

35 ——Core size ——(k-1)-core - k-core

30

25

20

15

10 Also a 2-clique

’ and a 2-club

0
0O-core 1-core 2-core 3-core



Meso: Density/clusters/communities  tongrange

or weak ties

Clusterability (Statistical ML principle)
Intra-cluster density / inter-cluster density > 1

Network closure

Homogeneity is higher inside a cluster than across different clusters.
New edges are more likely to appear inside clusters.

Triadic closure

Emergent edges will most likely "close’ some triangle €= EMbedded,

_ strong ties
Weak-ties property

The strongest the connection (tie) between two individuals, the

more likely they share contacts. Weak-ties are responsible for most Triadic closure
communication among clusters.

\
\

Structural hole \
(Similar to the above but with the opposite direction of causality)

Is the gap between two individuals who have complementary
sources to information. »



Network cohesion

= The concept of network cohesion is central for answering many questions:

= Definitions depend on the context
= Scale from local (e.g. triads) to global (e.g. giant component)
= Explicit (e.g. cliques) or implicit (e.g. clusters) definition

= Desirable in-group properties of any cohesive group:
= Familiarity... high degree
" Reachability... small distance
" Robustness... conectivity
= Density... edge density

" Cligues indeed maximize these properties but... are restrictive!

= Large cliques are super rare
* They are sensitive: one edge destroys the property
= Usually very costly to identify, or find maximal cliques in a graph (NP-complete)



Network cohesion - Density

= Global network density: measures how close to being a clique  Thisis for the

whole
== | ndirected

N
density(G) = : € [0,1] graph, but can
Nv(Nv o 1)/2 be applied also

to subgraphs

= Alternatively, it can be seen as a rescaling of the average degree

repl. N d(G)
d(G) = N Zd —2N ——= density(G) = N1

vEV v

" Local density at node v: we can use the v’s egonet,
i.e. the subgraph induced by its neighbors

18



Network cohesion — Clustering coefficient

= Clustering coefficient of node v: measures the fraction of v’s
neighbors that are connected (here £, is the #edges in the v’s egonet)

2F,
cl(v) = i(d —1) € [0,1]

= Global (average) clustering coefficient

cl(G) = Niz cl(v)

vaV

19



Assortative mixing

" Homophily or assortative mixing

Individuals tend to get connected/interact
with equal/similar others

= Example: high-school students by
race, bloggers by political party, ...

= Assortativity coefficient
Measures this property [Newman '03]

= Dissasortative mixing exists too...

e.g. romantic relationships between
males and females

@ Black
o0 White
® Other

20



Network cohesion — Giant component

= Large real-world networks /2‘/
typically exhibit one giant o

component

= Example: romantic relationships
in a US high school
[Bearman et al. ‘04]

e DYV i*%ﬁ‘i AR

Giant component



Random Small-world Scale-free

Small world phenomenon .}?/ ;{4

" |t refers to small average (shortest) path length = O(loghNv)
" Intuitively... long hops reduce drastically the length of paths

OOOOOOOOOOOOOOOOOOOOOOOOO

Friends of friends Friends of friends

" This property facilitates the spread of information, diseases, etc...

= Put in perspective: Spread speeds-up in one cluster, yet a different
cluster may be the reason to get ‘blocked’

22



Network cohesion — Group centrality

= Recall node centrality measures
= Closeness centrality: the node has small average shortest path to other nodes

" Betweeness centrality: the node is frequently part of the shortest path
between pairs of other nodes

" These can be extended to measure group centrality

23



Global vs local graph views

Local views

Context Cluster cut-out

Global views

Hierarchical

Reduction

24



Micro: Node ‘roles’

(e ooNoe @

coordinator itinerant broker representative gatekeeper liaison




Community detection

26



Community detection

Split VV into a given number k (non-overlapping) groups

" Finding communities in networks is a challenging clustering problem
= No concensus on the definition of « what is a cluster »

* NP-hard problem: i.e. there are combinatorics behind separating optimally
subsets of vertices and the problem cannot be solved in polynomial time.

" Lack of ground truth to validate results

= Result of great interest for a plethora of reasons
= Understanding data
= Visualization
= Compression

27



Graph partitioning

" |dea: try removing local bridges (weak
ties) to decompose the graph

* Combinatorial problem again: these may be
many and with different importance

" |dea: target edges with large edge
betweeness centrality (eBC)

" These edges are part of many shortest paths
among vertices

= => stand at the interface between clusters

Edge betweenness

28



Girvan-Newman’s method

" |dea: Find and remove spanning links between cohesive subgroups

= Algorithm: Repeat until there are no edges left
= Calculate the eBC of all remaining edges
" Remove the edges(s) with the highest eBC

= What we get
= Different connected components as communities
= Nested partitioning (top-down), returns a dendrogram
= Requires recomputing all centralities at each step O(N_,N,)

M. Girvan and M. Newman, “Community structure in social and biological networks,” PNAS, 2002



Original graph Step 1

. , @
Girvan-Newman's o
method o'oo
In action

Step3®
® ©

¢t e

M. Girvan and M. Newman, “Community structure in social and biological networks,” PNAS, 2002
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Hierarchical clustering

= A greedy approach that successively changes the solution
= Agglomerative: is merging groups (bottom up)
= Divisive: is splitting groups
= Returns a dendrogram with all the hierarchical structure
= Cutting the hierarchy at any level y (from the top) gives y + 1 clusters

= At each step the change should minimize a cost function

= This measures the dissimilarity between the vertices in each group
= Many options; a simple one is just the Euclidean or Manhattan



Agglomerative clustering

" Hierarchical Agglomerative clustering (bottom up)

= 1) Choose dissimilarity metric between groups (!!)

= 2) Assign each vertex to its own singleton group (1 vertex per group)

= 3) Merge the two groups with the smallest dissimilarity

* 4) Compute the dissimilarity of the new group with the preexisting ones
= 5) If the current number of groups > 1 ... goto (3)

" Most critical part is to define group similarity



Agglomerative clustering

Single linkage

O

O
o © O O
O O O O

O

Average linkage

O O
O —_—

0© = o
O 00= 04

o 9o

Complete linkage

O O O
o © o O
O O— OoO

33



Agglomerative clustering

In action — dendrograms
Average linkage Complete linkage Single linkage

=1

Hk[ %n ] i
| ﬁ%ﬂ ?;ﬂ W




Modularity-based community detection

Modularity
= Consider a graph G and a partition into groups s € S

Q(G,S) x Z[(# of edges within group s) — [E [# of such edges]]

se$

= After normalization such that Q(G,S) € [—1,1]

1 d;d;
)

scS i,jEs

= Null model: one with random edges that preserves the degree
distribution!

35



Modularity-based community detection

= We can evaluate modularity at the levels of a hierarchical dendrogram
= Keep the solution of the level that gives the ‘best’ community structure w.r.t Q

Al Iol] [

S E e RBESCTREYNSY WD

BURERZoBRGEEAREYR

= Why not to optimize the partitioning directly w.r.t Q

36



Modularity-based community detection

Optimizing modularity
dd,

INe
= Any 2-partition S can be defined by a {+1,-1} blnary vector s =[5, ...,5 |T

N
* Modularity gets a quadratic form

1
Q(G, Z Bjjsis; = s'Bs
ijeV N
= For graph bisection (2-split) the modularity-based criterion is formulated as

= Define a modularity matrix B with entries B;; = 4;; —

§=arg max s'Bs
sc{+1}MW

" Due to the ‘nasty’ binary constraints of s makes this optimization is NP-hard!



Modularity-based community detection

The relaxation of constraints yields a feasible optimization

. . N
= By letting constraints s € R, [|s]|, = 1 we get
S=argmaxs'Bs, s. tos's=1
S

T

= Associate a Langrange multiplier A to the constraints ' s =1

= Optimality conditions yields
Vs[s'Bs+A(1—s's)] =0=Bs= s

" Conclusion: s is an eigenvector of B with eigenvalue /A
= At the optimum Bs = As the objective becomes To maximize modularity
ick the dominant
s Bs=)s's =\ .
eigenvector of B 38



Modularity-based community detection

» Spectral modularity maximization algorithm

did;
2N,

S2: Find dominant eigenvector u; of B (e.g., power method)

S1: Compute modularity matrix B with entries B;; = A;; —

S3: Cluster membership of vertex i is s; = sign([u1];)

» Multiple (> 2) communities through e.g., repeated graph bisection

Zachary’s karate club

39



Spectral clustering

One moment... lets recall some spectral properties
of the matrix representations of a graph



Graph Laplacian
Although there are many definitions for Laplacian matrix,
the most common is the following N, x N,,

L=D-A

where D is a matrix with the degrees of the graph vertices
in its diagonal, and zero values everywhere else



<

N R xS

Graph Laplacian

Laplacian matrix L

u v w x y z
2 -1 -1
3 -1 -1|-1
1| -1
1(-1(-1( 4 -1
-1(-1 2
-1 -1 2

N <R xS

<

u

Degree matrix D

v

w X

Y

VA

2

N < X T = =g

Adjacency matrix A

u v w x y z
1 (1
1|11
1

1 (1|1 1

1|1

1 1

42




Graph Laplacian

Basic properties
= Zero-sum rows and columns ==> zero-sum matrix L
= All negative values except in the diagonal

= Same off-diagonal zeros as A has information only
for the directly connected pairs of vertices

" The input graph G cannot be a multigraph, edge
weights are ignored

" Like in multivariate calculus, for (a problem-specific)
x € RM"» that comes from some function f (G, ...),

xTLx = z (x; —xj)2 = z Ajj(x —xj)z

(i,))EE L,J€[L,Ny]

The closest x ' Lx isto zero, the more smooth the x is
with respect to the graph, and so for the f

N <R X T = =

Laplacian matrix L

u v w x y z
2 -1 -1
3 -11-1|-1
1| -1
-1|1-1(-1| 4 -1
-1|-1 2
-1 -1 2




Eigen-analysis of graph Laplacian

Generally, L’s eigenvalues and eigenvectors yield a lot of interesting
information for a graph regarding

(:’s connectivity

The smallest eigenvalue is O with eigenvector 1

If the second smallest eigenvalue is O then the graph is disconnected. The
multiplicity of O’s gives the # of components

The larger the non-trivial eigenvalues, the more connected a graph is
A connected graph of diameter § has at least § + 1 distinct eigenvalues

(:’s conductance (how fast does a random walk converge)
the potential growth of a diffusion on G



Graph Laplacian

Alternative definition: the normalized Laplacian matrix

- 1 _1
L=D2LD>
1 1 1 1 1
=D 2(D—A)D z=(D2D—D24)D2

_1 _1 2 1 _1 _1
=D 2DD 2—D 24D 2= —D 2AD 2
Properties
= Symmetric, positive semi-definite with n non-negative eigenvalues
= The smallest eigenvalue is 0 with eigenvector D'1/21

= More appropriate when there is degree inhomogeneity
= Constraints the eigenvaluesin [0, 2]



Spectral clustering

Principle

@ Use the spectral property of L to perform clustering in the eigen
space

® If the network have K connected components, the first K
eigenvectors are 1 span the eigenspace associated with eigenvalue 0

® Applying a simple clustering algorithm to the rows of the K first
eigenvectors separate the components

~+ This principle generalizes to a graph with a single component:
spectral clustering tends to separates groups of nodes which are highly
connected together

46



Spectral clustering

Algorithm

Input: Adjacency matrix and number of classes ()

Compute the normalized graph Laplacian L

Compute the eigen vectors of L associated with the () smallest
eigenvalues

Define U, the p x () matrix that encompasses these () vectors

. g . . . ~ Wiq
Define U, the row-wise normalized version of U: u;; = AL
) T

Apply k-means to (ﬁi)izljm,p

Output: vector of classes C € QF, suchas C; = q if i € g
Algorithm 2: Spectral Clustering by Ng, Jordan and Weiss (2002)

47



Eigenvalues of Graph Laplacian

Spectral clustering

Example on Zachary’s karate club

Op
(6!
OOOOO"3’00000
o)

o}

10 15 20 25 30 35

Index

Fiedler Vector Entry

-0.2 -0.1 0.0 0.1 0.2

-0.3

Split decided according to the Fiedler
vector: the eigenvector corresp. to the
2"d smallest eigenvalue

10 15 20 25

Actor Number

48



Possible projects

49



Possible projects @ Centre Borell]

= Graph degeneracy and traversals
= Density-Friendly Graph Decomposition (Tatti 2019)

= Community detection

= The Inclusion Measure for Community Evaluation and Detection in
Unweighted Networks (Koufos&Likas 2018)

" Linear graph arrangement algorithms
= Using various methods, e.g. multigrid framework (Safro et al)
= Graph signhal processing
" Graph signal processing for machine learning:
A review and new perspectives (Dong, Thanou et al. 2020)

= Stability of ecological networks (survey)

= Complexity and stability of ecological networks: a review of the
theory (Landi et al. 2018)

= Unveiling dimensions of stability in complex ecological networks
(Dominguez-Garcia et al. 2019)



Discussion
Q&A

o
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