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Why are we here?

Short course on Machine Learning for Network Modeling

Planning: 4 dense sessions, 2.5 hours each 

1. Introduction to Graph Theory and Network Science

2. Network models - Static and dynamic graphs*

3. Structure and topology inference

4. Processes and signals over graphs

* Session 2 is going to be given by Fabian Tarissan, CNRS, ENS Paris-Saclay
fabien.tarissan@ens-paris-saclay.fr
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How we’ll get through this?

Attend the courses

Do a short project

 It can be something around using the tools of the course for a 
problem of your main discipline or a thematic you’d like to pursue in 
the future

 The subject and perimeter of each project should be discussed

 Deliverables: report + codes (Matlab, R, Python, …)
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.:: In this lecture

1. How to define structure when studying networks

2. Why network ‘structure’ matters

3. Community detection

4. Possible projects
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Structure in Network Science
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Structure in networks

 Macro-level: 
 Degree distribution

 Small-world phenomena (i.e. short diameter)

 # Connected components

 Network model

 Meso-level:
 Motifs (e.g. triads, cliques, cores, …)

 Group behavior (for dynamic graphs)

 Structural holes / weak ties

 Community structure

 Micro-level:
Node-user modeling 

 Static: reciprocity, node’s relation to communities: hub, internal, interface nodes, …

 Dynamic: Actions (for dynamic graphs)
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Distant cousins
Link analysis … qualitative
Network analysis … quantitative



Recall: Direct vertex connectivity
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Graph motifs are statistically significant sub-graphs or 
patterns existing in a graph

 Very complicated to work with large motifs

 Usual analysis goes up to motifs of 3 to 5 nodes

Clique is a complete (sub)graph of vertices that is totally 
connected (i.e. complete) – … restrictive!!

Clique relaxations

𝑘-clique is a set of vertices among any pair of which the 
distance (shortest path) < 𝑘

𝑘-club (or 𝑘-plex) is a set of vertices that has diameter < 𝑘

Meso: Graph motifs

clique

star motif

Clique relaxation: 
the paths can pass 
from anywhere in 
the graph, not just 
the induced 
subgraph
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Examples

 {2,3,4} is a 1-club (also regular clique)

 {1,2,4,5,6} is a 2-club

 {1,2,3,4,5} is a 2-clique but not a 2-club
(Note: Ain this case we consider the 5 vertices as part of the 
full graph amd therefore 1 is 2 hops away from 5)

Meso: Graph motifs

Clique relaxation: 
the paths can pass 
from anywhere in 
the graph, not just 
the induced 
subgraph
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Triads are motifs that can be formed 
between three vertices

Labeling undirected triads can done using 
the numbering 1…4

 𝑙𝑎𝑏𝑒𝑙 − 1 = # edges in triad

Meso: Graph motifs

The 4 possible undirected  triads

Also a clique
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Labeling undirected triads can be done 

 either by the numbering 1…16

 or by using a format xyz
 x – # pairs of vertices connected with 

bidirected edges

 y – # pairs of vertices connected with 
one-direction edges

 z – # non-connected pairs of vertices

 When unclear, use also one letter:

Down, Up, Cyclic, Transitive

Meso: Graph motifs The 16 possible directed triads
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Transitivity in triads

If there are edges 𝑢 → 𝑣 and 𝑣 → 𝑤,
then there exists also the edge 𝑢 → 𝑤

Labeling undirected triads can be done 

 Triads 9, 12, 13, 16 are transitive

 Triads 6, 7, 8, 10, 11, 14, 15 are 
intransitive (… to different levels)

 Triads 1, 2, 3, 4, 5 are vacuously 
transitive (i.e. cannot be categorized)

Meso: Graph motifs The 16 possible directed triads
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A 𝑘-core is a maximal connected (sub)graph, 
whose vertices have at least degree 𝑘 (to 
vertices that belong or not to the core)

 Cores do not respect density!!

Meso: Graph cores
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A 𝑘-core is a maximal connected (sub)graph, 
whose vertices have at least degree 𝑘 (to 
vertices that belong or not to the core)

 Cores do not respect density!!

Graph degeneracy analysis

Meso: Graph cores
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A 𝑘-core is a maximal connected (sub)graph, 
whose vertices have at least degree 𝑘 (to 
vertices that belong or not to the core)

 Cores do not respect density!!

Graph degeneracy analysis

Meso: Graph cores

Also a 2-clique
and  a 2-club
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Clusterability (Statistical ML principle)

Intra-cluster density / inter-cluster density ≫ 1

Network closure

Homogeneity is higher inside a cluster than across different clusters. 
New edges are more likely to appear inside clusters.

Triadic closure

Emergent edges will most likely `close’ some triangle 

Weak-ties property

The strongest the connection (tie) between two individuals, the 
more likely they share contacts. Weak-ties are responsible for most 
communication among clusters.

Structural hole 
(Similar to the above but with the opposite direction of causality) 

Is the gap between two individuals who have complementary 
sources to information.

Meso: Density/clusters/communities

Triadic closure

Long-range 
or weak ties

Embedded, 
strong ties



Network cohesion

 The concept of network cohesion is central for answering many questions:

 Definitions depend on the context
 Scale from local (e.g. triads) to global (e.g. giant component)
 Explicit (e.g. cliques) or implicit (e.g. clusters) definition

 Desirable in-group properties of any cohesive group:
 Familiarity… high degree
 Reachability… small distance
 Robustness… conectivity
 Density… edge density

 Cliques indeed maximize these properties but… are restrictive!
 Large cliques are super rare
 They are sensitive: one edge destroys the property
 Usually very costly to identify, or find maximal cliques in a graph (NP-complete)
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Network cohesion - Density

 Global network density: measures how close to being a clique

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐺 =
𝑁𝑒

𝑁𝑣(𝑁𝑣 − 1)/2
∈ [0,1]

 Alternatively, it can be seen as a rescaling of the average degree

 𝑑 𝐺 =
1

𝑁𝑣

 

𝑣∈𝑉

𝑑𝑣 =
1

𝑁𝑣

2𝑁𝑒

𝑟𝑒𝑝𝑙. 𝑁
𝑒
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐺 =

 𝑑 𝐺

𝑁𝑣 − 1

 Local density at node 𝑣: we can use the 𝑣’s egonet, 
i.e. the subgraph induced by its neighbors

18

This is for the 
whole 
undirected 
graph, but can 
be applied also 
to subgraphs



Network cohesion – Clustering coefficient

 Clustering coefficient of node 𝑣: measures the fraction of 𝑣’s 
neighbors that are connected (here 𝐸𝑣 is the #edges in the 𝑣’s egonet)

𝑐𝑙 𝑣 =
2𝐸𝑣

𝑑𝑣(𝑑𝑣 − 1)
∈ [0,1]

 Global (average) clustering coefficient

𝑐𝑙 𝐺 =
1

𝑁𝑣

 

𝑣∈𝑉

𝑐𝑙(𝑣)
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Assortative mixing

 Homophily or assortative mixing
Individuals tend to get connected/interact 
with equal/similar others

 Example: high-school students by 
race, bloggers by political party, …

 Assortativity coefficient
Measures this property [Newman ’03]

 Dissasortative mixing exists too…

e.g. romantic relationships between 
males and females
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Network cohesion – Giant component

 Large real-world networks 
typically exhibit one giant 
component

 Example: romantic relationships 
in a US high school 
[Bearman et al. ‘04]
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Giant component

Small disconnected 
components



Small world phenomenon

 It refers to small average (shortest) path length ≈ 𝑂(log𝑁𝑣)

 Intuitively… long hops reduce drastically the length of paths

 This property facilitates the spread of information, diseases, etc…

 Put in perspective: Spread speeds-up in one cluster, yet a different
cluster may be the reason to get ‘blocked’
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Random Small-world Scale-free



Network cohesion – Group centrality

 Recall node centrality measures
 Closeness centrality: the node has small average shortest path to other nodes

 Betweeness centrality: the node is frequently part of the shortest path
between pairs of other nodes

 These can be extended to measure group centrality
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Micro: Node ‘roles’
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Community detection
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Community detection

 Finding communities in networks is a challenging clustering problem
 No concensus on the definition of « what is a cluster »
 NP-hard problem: i.e. there are combinatorics behind separating optimally

subsets of vertices and the problem cannot be solved in polynomial time.
 Lack of ground truth to validate results

 Result of great interest for a plethora of reasons
 Understanding data
 Visualization
 Compression
 … 27

Split 𝑉 into a given number 𝑘 (non-overlapping) groups



Graph partitioning

 Idea: try removing local bridges (weak
ties) to decompose the graph
 Combinatorial problem again: these may be

many and with different importance

 Idea: target edges with large edge
betweeness centrality (eBC)
 These edges are part of many shortest paths

among vertices

 => stand at the interface between clusters
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Girvan-Newman’s method

 Idea: Find and remove spanning links between cohesive subgroups

 Algorithm: Repeat until there are no edges left
 Calculate the eBC of all remaining edges

 Remove the edges(s) with the highest eBC

 What we get
 Different connected components as communities

 Nested partitioning (top-down), returns a dendrogram

 Requires recomputing all centralities at each step 𝑂(𝑁𝑣𝑁𝑒)
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M. Girvan and M. Newman, “Community structure in social and biological networks,” PNAS, 2002



Girvan-Newman’s 
method
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M. Girvan and M. Newman, “Community structure in social and biological networks,” PNAS, 2002

In action



Hierarchical clustering

 A greedy approach that successively changes the solution
 Agglomerative: is merging groups (bottom up)

 Divisive: is splitting groups

 Returns a dendrogram with all the hierarchical structure

 Cutting the hierarchy at any level 𝛾 (from the top) gives 𝛾 + 1 clusters

 At each step the change should minimize a cost function
 This measures the dissimilarity between the vertices in each group

 Many options; a simple one is just the Euclidean or Manhattan
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Agglomerative clustering

 Hierarchical Agglomerative clustering (bottom up)

 1) Choose dissimilarity metric between groups (!!)

 2) Assign each vertex to its own singleton group (1 vertex per group)

 3) Merge the two groups with the smallest dissimilarity

 4) Compute the dissimilarity of the new group with the preexisting ones

 5) If the current number of groups > 1 … goto (3)

 Most critical part is to define group similarity
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Agglomerative clustering
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Single linkage Complete linkage

Average linkage



Agglomerative clustering
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Average linkage Complete linkage Single linkage

In action – dendrograms



Modularity-based community detection

Modularity

 Consider a graph 𝐺 and a partition into groups 𝑠 ∈ 𝑆

 After normalization such that 𝑄 𝐺, 𝑆 ∈ [−1, 1]

 Null model: one with random edges that preserves the degree 
distribution!
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Modularity-based community detection

 We can evaluate modularity at the levels of a hierarchical dendrogram

 Keep the solution of the level that gives the ‘best’ community structure w.r.t 𝑄

 Why not to optimize the partitioning directly w.r.t 𝑄
36



Modularity-based community detection

Optimizing modularity

 Define a modularity matrix 𝛣 with entries 𝛣𝑖𝑗 = 𝐴𝑖𝑗 −
𝑑

𝑖
𝑑

𝑗

2𝑁𝑒

 Any 2-partition 𝑆 can be defined by a {+1,-1} binary vector  𝑠 = 𝑠1, … , 𝑠
𝑁𝑣

T

 Modularity gets a quadratic form

 For graph bisection (2-split) the modularity-based criterion is formulated as

 Due to the ‘nasty’ binary constraints of 𝑠 makes this optimization is NP-hard!
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Modularity-based community detection

The relaxation of constraints yields a feasible optimization

 By letting constraints 𝑠 ∈ R
𝑁𝑣, 𝑠 2 = 1 we get

 Associate a Langrange multiplier 𝜆 to the constraint

 Optimality conditions yields

 Conclusion: 𝑠 is an eigenvector of 𝐵 with eigenvalue 𝜆

 At the optimum 𝐵𝑠 = 𝜆𝑠 the objective becomes
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To maximize modularity, 
pick the dominant 
eigenvector of 𝐵



Modularity-based community detection

Algorithm
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Zachary’s karate club



Spectral clustering

One moment… lets recall some spectral properties
of the matrix representations of a graph
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Graph Laplacian

Although there are many definitions for Laplacian matrix, 
the most common is the following 𝑁𝑣 x 𝑁𝑣

𝐿 = 𝐷 − 𝐴

where 𝐷 is a matrix with the degrees of the graph vertices
in its diagonal, and zero values everywhere else
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Graph Laplacian

1 1

1 1 1

1

1 1 1 1

1 1

1 1

𝑤

𝑢

𝑣

x

𝑦

𝑧

𝑢 𝑣 𝑤 x 𝑦 𝑧

Laplacian matrix 𝐿

2

3

1

4

2

2

𝑤

𝑢

𝑣

x

𝑦

𝑧

𝑢 𝑣 𝑤 x 𝑦 𝑧

Degree matrix 𝐷 Adjacency matrix 𝐴

Graph

𝑣𝑢

𝑤

𝑥

𝑦 𝑧

2 -1 -1

3 -1 -1 -1

1 -1

-1 -1 -1 4 -1

-1 -1 2

-1 -1 2

𝑤

𝑢

𝑣

x

𝑦

𝑧

𝑢 𝑣 𝑤 x 𝑦 𝑧
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Graph Laplacian

Laplacian matrix 𝐿

Graph

𝑣𝑢

𝑤

𝑥

𝑦 𝑧

2 -1 -1

3 -1 -1 -1

1 -1

-1 -1 -1 4 -1

-1 -1 2

-1 -1 2

𝑤

𝑢

𝑣

x

𝑦

𝑧

𝑢 𝑣 𝑤 x 𝑦 𝑧
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Basic properties
 Zero-sum rows and columns  ==>  zero-sum matrix 𝐿

 All negative values except in the diagonal

 Same off-diagonal zeros as 𝐴 has information only 
for the directly connected pairs of vertices

 The input graph 𝐺 cannot be a multigraph, edge 
weights are ignored

 Like in multivariate calculus, for (a problem-specific) 
𝑥 ∈ R𝑁𝑣 that comes from some function 𝑓(𝐺,… ), 

𝑥T𝐿𝑥 =  

(𝑖,𝑗)∈𝐸

(𝑥𝑖 − 𝑥𝑗)
2 =  

𝑖,𝑗∈[1,…,𝑁𝑣]

𝐴𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2

The closest  𝑥T𝐿𝑥 is to zero, the more smooth the 𝑥 is 
with respect to the graph, and so for the 𝑓



Eigen-analysis of graph Laplacian
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Generally, 𝐿’s eigenvalues and eigenvectors yield a lot of interesting
information for a graph regarding

 𝐺’s connectivity

 The smallest eigenvalue is 0 with eigenvector 1 

 If the second smallest eigenvalue is 0 then the graph is disconnected. The 
multiplicity of 0’s gives the # of components

 The larger the non-trivial eigenvalues, the more connected a graph is

 A connected graph of diameter 𝛿 has at least 𝛿 + 1 distinct eigenvalues

 𝐺’s conductance (how fast does a random walk converge)

 the potential growth of a diffusion on 𝐺

 …



Graph Laplacian

Alternative definition: the normalized Laplacian matrix

 𝐿 = 𝐷−
1
2 𝐿 𝐷−

1
2

= 𝐷−
1

2 𝐷 − 𝐴 𝐷−
1

2 = (𝐷−
1

2𝐷 − 𝐷−
1

2𝐴) 𝐷−
1

2

= 𝐷−
1

2𝐷𝐷−
1

2 − 𝐷−
1

2𝐴𝐷−
1

2 = 𝐼 − 𝐷−
1

2 𝐴 𝐷−
1

2

Properties

 Symmetric, positive semi-definite with 𝑛 non-negative eigenvalues

 The smallest eigenvalue is 0 with eigenvector D-1/21 

 Μore appropriate when there is degree inhomogeneity

 Constraints the eigenvalues in [0, 2]
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Spectral clustering
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Principle



Spectral clustering
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Algorithm



Spectral clustering
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Example  on Zachary’s karate club

Split decided according to the Fiedler 
vector: the eigenvector corresp. to the 
2nd smallest eigenvalue



Possible projects
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Possible projects @ Centre Borelli

 Graph degeneracy and traversals
 Density-Friendly Graph Decomposition (Tatti 2019)

 Community detection
 The Inclusion Measure for Community Evaluation and Detection in 

Unweighted Networks (Koufos&Likas 2018)

 Linear graph arrangement algorithms
 Using various methods, e.g. multigrid framework (Safro et al)

 Graph signal processing 
 Graph signal processing for machine learning:

A review and new perspectives (Dong, Thanou et al. 2020)

 Stability of ecological networks (survey)
 Complexity and stability of ecological networks: a review of the 

theory (Landi et al. 2018)
 Unveiling dimensions of stability in complex ecological networks 

(Dominguez-Garcia et al. 2019)
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Discussion
Q & A

?!
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