Machine Learning for Network Modeling

Argyris Kalogeratos

name.surname@ens.paris-saclay.fr
MLMDA research group
Center Giovanni Borelli
ENS Paris-Saclay

Who's talking?

Argyris Kalogeratos - kalogeratos@cmla.ens-cachan.fr

- Researcher at the Center Giovanni Borelli*, ENS Paris-Saclay
- Background: Computer Science - Machine Learning
- Coordinating the "Machine Learning for Graphs" research theme at the MLMDA group

Why are we here?

Short course on Machine Learning for Network Modeling
Planning: 4 dense sessions, 2.5 hours each

1. Introduction to Graph Theory and Network Science
2. Network models - Static and dynamic graphs*
3. Structure and topology inference
4. Processes and signals over graphs

* Session 2 is going to be given by Fabian Tarissan, CNRS, ENS Paris-Saclay fabien.tarissan@ens-paris-saclay.fr

How we'll get through this?

Attend the courses

Do a short project

- It can be something around using the tools of the course for a problem of your main discipline or a thematic you'd like to pursue in the future
- The subject and perimeter of each project should be discussed
- Deliverables: report + codes (Matlab, R, Python, ...)

Resources

Course's material

- http://kalogeratos.com/psite/ai-ml-for-network-modeling/

Books

- E.D. Kolaczyk (2009). Statistical Analysis of Network Data: Methods and Models, Springer, New York
- M. Newman (2018). Networks: An Introduction, Oxford University Press
- A-L. Barabási (2016). Network Science. Cambridge University Press
- ... material from our research in academia and industrial collaborations

Check also: https://github.com/briatte/awesome-network-analysis

Introduction to Network Science and Graph Theory

.:: In this lecture

1. Motivation why to study networks
2. Why and how Statistics and Machine Learning can help
3. What's behind Networks: Intro/review of graphs and related topics

Why Networks?

- Spoiler: behind networks there are graphs!!

- Graphs and graph theory come from the old days (recall Euller?)

Why Networks?

- Until ~20 years ago, a field of study attracting mainly mathematicians
- Ever since, an increasing trend due to several reasons...
- Simple models of 'reductionism' have been proven to be limiting to our view
- Scientific tendency to find the right level of simplicity/complexity
- System-level analysis has been gaining fans and space in science
- Creation and storage of abundant and complex data in databases Exponential growth (recall Moore's law)
- Technological (and not only) globalization, Internet, Internet-of-Things, etc
- New terms: Network Science, Network (Data) Engineering, Graph-based ML

What is a 'Network'?

Roughly... a collection of interconnected entities

Entities of interest may be

- people
- species of the flora or fauna (e.g. plants, animals, ...)
- organizations (e.g. states, airports, companies, ...)
- computers (e.g. servers, mobile phones/PCs, sensors, ...)
- geographic locations (e.g. places for weather forecasting)
- ... or generally interrelated variables of some multivariate environment/problem...

What is a 'Network'?

Roughly... a collection of interconnected entities

We need to be careful as the term 'network' might be used to describe either one, two, or even all of the following

- the overall interconnected system ('networked system')
- the graph structure that represents that system
- and if a system evolves in time, 'network' might even imply that it is an object that encodes also the system's time-varying nature...

What is then 'network data'?

Roughly... a collection of interconnected entities
'Networked system' is a system conceptualized as a network
Then, 'network data' can be ...

- either a set of measurements that describes the networked system (e.g. its organizational structure)
- or a set of measurements that come from the interconnected system itself,
- ... (imagine we also have the time component)

Traditional vs Network-based methods

- Traditional methods see a set of individual variables (recall vectors)
- Network-based methods see interrelated variables depending on the 'structure' of the problem

Data vec	
	0
	5
	0
	3
	1
	0
	1
	9

VS

Where we aim at?

Conceptualize problems and systems as a networked environment
Modeling and statistical analysis of network data
ML and decision making (maybe interactive) in such environments
Some of the challenges

- the relations between entities give relational data
- sometimes (super) high-dimensional data and/or (super) big in size
- complex statistical dependencies
- This is where special statistical methods and ML can give the lead

Examples of networks

The interest for a network-based perspective concerns broadly

- computational sciences
- humanities
- administration and management
- art!!

General application areas where we can see networks

- Technological
- Informational
- Social
- Biological

Example

Transportation
Air traffic network

Network inspection

Zachary's university karate club

Link Analysis vs Network Analysis
Qualitative vs Quantitative

Network inspection

We can identify, visually and/or computationally, the roles of different graph nodes

- Edge density / connectivity
- Center vs Periphery
- Hub (or bridge) vs isolated nodes
- Communities
- Interface nodes between different
 communities
- k-core identification (subgraph of nodes that all have at least degree k)

Network inspection

For a large graph, which we may not be able to fully access, we are forced to work with 'samples'
Sampling can be

- passive (we don't choose)
- active (we choose our sample)
- active-corrective

We need to know the statistical properties of the sampling scheme to deal with biases

Examples of questions on networked systems

How can I...

- visualize a network?
- extract features, and simplify its complex structure?
- compare two networks?
- realize the different roles of each node in the system?
- reveal functional attributes?
- reveal its vulnerabilities?
- evaluate its security against (static or dynamic) attacks?

Examples of questions on networked systems

How can I...

- ...
- take advantage of (and engineer on) its vulnerabilities or functional attributes for achieving a given goal?
- estimate the stability after dramatic changes in a network?
- monitor the system and detect events or outlying/erroneous behavior?
- automatically decode complex information using knowledge bases?
- predict next events of the evolution of a growing/changing graph in time?
- create random graph models that resemble real networks?

Elements of Graphs and Graph Theory

Graphs

Network

A network provides a 'structured' space in which we can conceptualize and think of a problem/system!

Map

The analog is Geography and cartographic maps!

Graphs... are the basic mathematical models that allow analysis of networks
Next we will see

- Definition of a graph and concepts
- Graphs and matrix algebra
- Data structures for representing graphs and related algorithms

Definition of a graph

A graph $G=(V, E)$ is a mathematical structure of two sets:

- V containing vertices (or nodes)
- E containing connecting edges (or links), typically unordered pairs of vertices (u, v), with $u, v \in V$
Let $N_{v}=|V|$ and $N_{e}=|E|$ the size of these sets
Adjacency: two adjacent vertices have an edge connecting them Analogously, adjacent edges have one mutual end vertex
Simple graph: no self-loops over a node, no parallel edges (multi-edges)

Variable terminology across domains

points	lines	
vertices	edges, arcs	math
nodes	links	computer science
sites	bonds	physics
actors	ties, relations	sociology

Direct vertex connectivity


```
non-connected
```


simply connected

one-way connected

two-way connected (reciprocity)

Subgraphs

A graph $g=\left(V_{g}, E_{g}\right)$ is a subgraph of

Graph another graph $G=(V, E)$ iff

- $V_{g} \subseteq V$
- $E_{g} \subseteq E$

A graph $g=\left(V^{\prime}, E^{\prime}\right)$ is an induced subgraph
 of $G=(V, E)$ if

- first, a set of vertices $V^{\prime} \subseteq V$ is given
- then, all edges connecting them are included in the $E^{\prime} \subseteq E$

Types of graphs (some)

(a) unweighted, undirected
(b) discrete vertex and edge types, undirected
(c)

(d)

(c) varying vertex and edge weights, undirected
(d) directed

Types of graphs (some)

Bipartite graph

Part 2

Types of graphs (some)

Multiplex graph

Degree

Degree d_{v} of a vertex v is the number of incident edges to it
The sum of the degrees: $\sum_{v=1}^{|N|} d_{v}=2|E|$

$$
d_{v}=3
$$

Degree sequence is the non-decreasing ordering of the all vertices' degrees in the graph: $d_{(1)} \leq d_{(2)} \leq \cdots \leq d_{(|N|)}$

Degree distribution ...

Directed graphs: we can define the indegree and out-degree for a vertex

Movement / Reachability / Components

Walk on a graph from v_{0} to v_{l} is any sequence ($v_{0}, e_{0}, v_{1}, e_{1}, \ldots, v_{l-1}, e_{l-1}, v_{l}$)
There might exist several walks from v_{0} to v_{l}

- Length of walk is l

Graph

- Trail is a walk without repeating edges
- Path is a walk without repeating vertices
- Circuit is trail that comes back to $v_{0}=v_{l}$
- Cycle is path that comes back to $v_{0}=v l$
- Distance from v_{0} to v_{l} is the shortest path connecting them
- Diameter of a graph is the maximal distance between any pair of vertices

Movement / Reachability / Components

Vertex v is reachable from u if there is a path connecting them
A graph is connected if all vertices are reachable to each other

A component is a maximally connected subgraph (also strong and weak connectivity for digraphs)
A regular graph's vertices have equal degree A complete graph has $\left(N_{e}-1\right)^{2}$ edges
A clique is a complete graph of c vertices that is totally connected (i.e. complete)

Graph

2 components
clique

Movement / Reachability / Components

Graph cut is the set of edges that after removal they induce one or more disconnected components

Graph

A random walk starts from a vertex and follows randomly edges of the visited node (weighted random choices for weighted graphs)

- At the limit, during a very long random walk the frequency of visiting each vertex converges to a stationary distribution which is the degree distribution
- Random walks are very important tools

Adjacency matrix

Representing the connectivity of a graph by a matrix is very convenient

Graph Theory + Matrix Algebra = ...
... Algebraic Graph Theory
The adjacency matrix A of a graph G is a square binary matrix, (typically symmetric), where

$$
A_{i j}=f(x)=\left\{\begin{array}{lr}
1, & \text { if }\{i, j\} \in E \\
0, & \text { otherwise }
\end{array}\right.
$$

- The non-zero weights can be bigger than 1 for weighted graphs
- Symmetricity does not generally hold for

	u	v	w	x	y	z
u	0	0	0	1	1	0
v	0	0	0	1	1	1
w	0	0	0	1	0	0
x	1	1	1	0	0	1
y	1	1	0	0	0	0
z	0	1	0	1	0	0

Adjacency matrix

Various operations on matrix A

- Degree: $d_{i}=\sum_{j>i} A_{i j}$
- Number of walks: $\left(A^{r}\right)_{i j}=(A A \ldots A)_{i j}$
- Eigen-structure:

$$
\begin{aligned}
& A v_{1}=\lambda_{1} v_{1} \\
& A v_{2}=\lambda_{2} v_{2}
\end{aligned}
$$

$$
A v_{N_{v}}=\lambda_{N_{v}} \mathrm{v}_{N_{v}}
$$

$\lambda_{N_{v}}$ is always zero
where v is an eigenvector and λ an associated eigenvalue in each case
The ordering of the eigenvalues exhibits also important properties

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N_{v}}
$$

Spectral radius: $\rho(A)=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{N_{v}}\right|\right\}$

Example with paths

Adjacency matrix A

Adjacency matrix A^{2}

	u	v	w	x	y	z
u	2	2	1			1
v	2	3	1	1		1
w	1	1	1			1
X		1		4	2	1
y				2	2	1
z	1	1	1	1	1	2

Adjacency matrix A^{3}

	u	v	w	x	y	z
u		1		6	4	2
v	1	2	1	7	5	4
w		1		4	2	1
x	6	7	4	2	1	5
y	4	5	2	1		2
z	2	4	1	5	2	2

Graph Laplacian

There are several definitions for the Laplacian matrix, the most common is the following $N_{v} \times N_{v}$

$$
L=D-A
$$

where D is a matrix with the degrees of the graph vertices in its diagonal, and zero values everywhere else

Graph Laplacian

Graph

Laplacian matrix L

	u	v	w	x	y	z
u	2			-1	-1	
v		3		-1	-1	-1
w			1	-1		
x	-1	-1	-1	4		-1
y	-1	-1			2	
Z		-1		-1		2

Adjacency matrix A

	u	v	w	x	y	z
u				1	1	
v				1	1	1
w				1		
X	1	1	1			1
y	1	1				
z		1		1		

Graph Laplacian

Basic properties

- Zero-sum rows and columns ==> zero-sum matrix L
- All negative values except in the diagonal

- Same off-diagonal zeros as A has information only for the directly connected pairs of vertices
- The input graph G cannot be a multigraph, edge weights are ignored (but could be considered)
- Like in multivariate calculus, for (a problem-specific) $x \in \mathrm{R}^{N_{v}}$ that comes from some function $f(G, \ldots)$,

$$
x^{\mathrm{T}} L x=\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}=\sum_{i, j \in\left[1, \ldots, N_{v}\right]} A_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

The closest $x^{\mathrm{T}} L x$ is to zero, the more smooth the x is with respect to the graph, and so for the f

Laplacian matrix L

	u	v	w	x	y	z
u	2			-1	-1	
v		3		-1	-1	-1
w			1	-1		
x	-1	-1	-1	4		-1
y	-1	-1			2	
z		-1		-1		2

Graph Laplacian

Graph signals with increased smoothness (a) to (c)

Example of smoothness

Waldo Tobler's First Law of Geography:

"Everything is related to everything else, but near things are more related than distant things."

- It is the foundation of the fundamental concepts of spatial dependence and spatial autocorrelation
- It is the fundamental assumption used in all spatial analysis

Graph Laplacian

Alternative definition: the normalized Laplacian matrix

$$
\begin{aligned}
\tilde{L} & =D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \\
& =D^{-\frac{1}{2}}(D-A) D^{-\frac{1}{2}} \\
& =\left(D^{-\frac{1}{2}} D-D^{-\frac{1}{2}} A\right) D^{-\frac{1}{2}} \\
& =D^{-\frac{1}{2}} D D^{-\frac{1}{2}}-D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \\
& =I-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}
\end{aligned}
$$

- More appropriate when there is degree inhomogeneity
- Constraints the eigenvalues in $[0,2]$

Eigen-analysis of graph Laplacian

Generally, L 's eigenvalues and eigenvectors yield a lot of interesting information for a graph regarding

- G's connectivity
- The smallest eigenvalue is 0 with eigenvector 1
- If the second smallest eigenvalue is 0 then the graph is disconnected The multiplicity of that gives the \# components
- A connected graph of diameter δ has at least $\delta+1$ distinct eigenvalues
- The larger its non-trivial eigenvalues are, the more connected a graph is
- G's conductance (how fast does a random walk converge)

Eigen-analysis of graph Laplacian

G's conductance or Cheeger constant ... (how fast does a random walk converge)

- The conductance of a $\operatorname{cut}\left(S, S^{\prime}\right)$, where $S \cap S^{\prime}=\varnothing$ different node sets

$$
c(S)=\frac{\sum_{i \in S, j \in S^{\prime}} A_{i j}}{\min \left(A(S), A\left(S^{\prime}\right)\right)}
$$

Where $A_{i j}$ is the element of the adjacency matrix, and $A(S)=\sum_{i \in S, j \in V} A_{i j}$

- The conductance of all graph is the minimal for all possible sets S

$$
c(G)=\min _{S \in G} c(S)
$$

Eigen-analysis of graph Laplacian

In the presence of graph structure of k communities

- the $\operatorname{rank}(A) \approx k$ and is related to the number of clusters/communities
- A can be rearranged (both row- and column-wise) in a way that a blockdiagonal structure is revealed
- Each eigenvalue is associated with a different cluster, and the largest difference of eigenvalues (eigengap) can be measured between $\lambda_{k}-\lambda_{k+1}$

Community structure

B.D. Adjacency matrix

Data structures and algorithms

How we can process, manipulate, store, query graphs in practice?

Contributions mainly from Computer Science

Three main data structures

- Adjacency matrix (as we saw that earlier)
- Adjacency list

- Edge list

Edge list

- 2-column list with the vertices of all edges

Adjacency list

Data structures and algorithms

Space required to store a graph G with N_{v} vertices and N_{e} edges

- Adjacency matrix: $\mathrm{O}\left(N_{v}^{2}\right)$
- Adjacency list: $\quad \mathrm{O}\left(N_{v}+N_{e}\right)$
- Column list: $\quad \mathrm{O}\left(N_{e}\right)$
where $O($.$) measures order of magnitude$
For sparse graphs there is a big reduction of storage requirements, but also algorithms get much faster!

The data structure can be also chosen having in mind how it will affect the computational tasks we want to perform on the graph

Data structures and algorithms

Suppose a problem statement: annotate the nodes of a given network Solutions: Breadth-First Search (BFS) vs Depth-First Search (DFS)

Data structures and algorithms

Suppose a problem statement: annotate the nodes of a given network

Breadth-First Search (BFS)

Implementation with a queue data structure (First-in-First-Served)
Queue: a list where insert (enqueue) goes to the front and removal (dequeue) takes an element from the front
step 0: Insert 0 to empty Q
step 1: Dequeue and insert children
step 2: Dequeue and insert children
step 4: Dequeue and insert children
step 5: Dequeue
step 6: Dequeue
step 7: Dequeue
step 8: Dequeue
Output: 0, 1, 2, 3, 4, 5, 6

$$
\begin{aligned}
& Q=\{0\} \\
& Q=\{\theta, 1,2\} \\
& Q=\{1,2,3,4\} \\
& Q=\{z, 3,4,5,6\} \\
& Q=\{3,4,5,6\} \\
& Q=\{4,5,6\} \\
& Q=\{5,6\} \\
& Q=\{6\} \\
& Q=\text { empty }
\end{aligned}
$$

Data structures and algorithms

Suppose a problem statement: annotate the nodes of a given network

Depth-First Search (DFS)

Implementation with a stack data structure and a table noting which nodes have been visited (First-in-Last-Served)
Stack: a list where both insert (push) and removal (pop) operate on the front (top) of the list

step 0: Push 0 to empty S	$S=\{0\}$
step 1: Pop and re-push, push left child	$S=\{\theta, 1,0\}$
step 2: Pop and re-push, push left child	$S=\{1,3,1,0\}$
step 4: Pop	$S=\{3,1,0\}$
step 5: Pop and push next child	$S=\{1,4,0\}$
step 6: Pop	$S=\{4,0\}$
step 7: Pop and re-push, push left child	$S=\{\theta, 2\}$
step 8: ...	$S=\{z, 5,2\}$
	$S=\{5,2\}$
Output: $0,1,3,4,2,5,6$	$S=\{Z, 6\}$
	$S=\{6\}$
50	
	$S=e m p t y$

$$
S=\{0\}
$$

$$
S=\{\theta, 1,0\}
$$

$$
S=\{1,3,1,0\}
$$

$$
S=\{3,1,0\}
$$

$$
S=\{1,4,0\}
$$

$$
S=\{4,0\}
$$

$$
S=\{\theta, 2\}
$$

$$
S=\{z, 5,2\}
$$

$$
S=\{5,2\}
$$

$$
S=\{z, 6\}
$$

$$
S=\{\theta\}
$$

$$
\mathrm{S}=\mathrm{empty}
$$

Data structures and algorithms

There are queries of variable difficulty. These are easy or doable

- Are two vertices i, j connected? Check $A(i, j)$; or traverse the $\operatorname{adjlist}(i)$ to find j
- Compute the degree $d(i)$
sum the i-th row or column of A; or measure the length of $\operatorname{adjlist(i)}$
- Which is the shortest path between vertices i, j ?

Dikstra's algorithm finds all shortest paths from vertex i to all other vertices in $O\left(N_{v}^{2} \log N_{v}+N_{v} N_{e}\right)$ time

- Identify connected components?

DFS/BFS algorithms $\mathrm{O}\left(N_{v}+N_{e}\right)$ time

- Find the Minimum Spanning Tree Prim's algorithms which is $\mathrm{O}\left(N_{e} \log N_{v}\right)$

Data structures and algorithms

These queries are very hard or infeasible (i.e. NP-hard) for large graphs and in fact is where Machine Learning can help with approximations

- Find the maximal clique?
- Segment the graph in k parts in a way that minimizes the number of crossedges between the parts
- Find a subgraph of G that is isomorfic to a given query graph
- Graph matching: best match two graphs
- Compute the similarity between two graphs by finding the optimal correspondance among their vertices
- Color a graph with minimal number of different colors, in a way that no adjacent vertex has the same color
- Layout problems for visualizing complex graphs

Vizualizing a graph

- Several algorithms apply heuristics to visualize graphs in the 2D space
- Force-directed graph drawing algorithms are a class of such algorithms that are based on attraction (and possibly repulsion) forces that tend to bring closer in the space a pair of nodes with high connection weight
- They initialize randomly the node positions and then they operate iteratively.
- They are useful and intuitive, but also non-deterministic and slow, ...
- Suggested tool: Gephi

Let's check an example

- Download Gephi from https://gephi.org/
- Download an example graph (e.g. Zachary's karate club) from https://github.com/gephi/gephi/wiki/ Datasets
- Produce a vizualization using a force-based algorithm
- Modify the appearance

Examples of Real Networks

Technological networks

Transportation, communication, sensor networks, energy ...
Air traffic network

Technological networks

Transportation, communication, sensor networks, energy ...

German Autobahn (high-way)

Source: Wikipedia,
https://en.wikipedia.org/wiki/Autobahn\#/media/
File:Autobahnen in Deutschland.svg

Technological networks

 Transportation, communication, sensor networks, energy ...
Line J and Line L of Transilien (Ile-de-France)

Source: MORANE project, SNCF-Center Borelli

Technological networks

Transportation, communication,

 sensor networks, energy ...Metro networks Around the world

Technological networks

Transportation, communication, sensor networks, energy ...

Communication antennas receiving messages from mobile devices

Technological networks

Transportation, communication, sensor networks, energy ...
Network atlas of the global Internet infrastructure

Technological networks

 Transportation, communication, sensor networks, energy ...Sensors network measuring temperature or other meteo attributes

Technological networks Transportation, communication, sensor networks, energy ...

European high-voltage electrical grid

Technological networks Transportation, communication, sensor networks, energy ...

Network diagram of a highvoltage transmission system (not physical geography)

Source: P. Cuffe et al. (2017). "Visualizing the Electrical Structure of Power Systems". IEEE Systems Journal.

Information networks

...can be also tech nets

e.g. the computer system of an university campus

DECENTRALIZED
(B)
e.g. a peer-to-peer file sharing network

CENTRALIZED

DISTRIBUTED (C)

Information networks

Paper-based citation network

Spotlight: directing users' attention on large displays (2005)

Azam Khan, Justin Matejka, George Fitzmaurice, and Gordon Kurtenbach

We describe a new interaction technique, called a spotlight, for directing the visual attention of an audience when viewing data or presentations on large wall-sized displays. A spotlight is simply a region of the display where the contents are isplayed normally while the remainder of the display is somewhat darkened. In this paper we define the behavior of sotlights, show unique affordances of the technique, and discuss design characteristics. We also report on experiment 66 show the benefit of using the spotlight a large display and standard desktop configuration. Our results suggest that the.

Information networks
 ... over social networks

(a) 60 seconds after the hacked twitter account sent out the White House rumor there were already sufficient enquiry tweets (blue nodes).
 tweets (blue nodes).

(b) Two seconds after the first denial from an AP employee and two minutes before the official denial from AP, the rumor had already gone viral.

Information networks

... similarity nets

Often co-purchased products in Carrefour Markets (France)

Carrefour discount

Information networks
 ... preference nets

Movies and people in credits

Information networks
 ... similarity nets

Network of similarity between authors of literature based on the number of readers' preference

Stephen King is in white and in red all other 'relevant' authors.

Information networks

... ontologies and semantic nets

A language term represented as part of a semantic network of connected and interrelated senses

Information networks

... ontologies and semantic nets

Natural Language Processing (NLP):

A sentence represented as a dependency parsing graph

Information networks

... dependency and event networks
Legal network: Cross-reference links between legal documents in the EUR-lex dataset

11957E100

Information networks

... probabilistic graphical models

Information networks
 ... computational (flow) networks

Computation graph of a TensorFlow application

Social networks

 ...through which information gets diffusedA map of the Facebook network

Source: C. Andris, et al. (2015). The Rise of Partisanship and Super-Cooperators in the U.S. House of Representatives, PLOS ONE

Social networks

... or conflict nets

Political alliances and conflicts in Middle East

Positive "ally" tie
Negative "enemy" tie \longrightarrow

Social networks

... through which information and ideas get diffused

Local social network around a LinkedIn user

Social networks

... collaboration nets

Author-based
citation network
(and citation cartels)

Social networks

... contact and friendship nets

Zachary's university karate club (frienships)

Source: W.W. Zachary, (1977). An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthropological Research.

Social networks

... contact and friendship nets

Face-to-face contacts among pupils of a French primary school

Biological networks

Interaction network of among different areas of the human brain (top) based on fMRI data

Biological networks

Dynamic networks

... contact and friendship nets

Face-to-face contacts among pupils of a French primary school ... during a school day

Source: J. Stehlé, (2011). High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School. PLOS One https://journals.plos.org/plosone/article?id=10.1371/journal .pone. 0023176

SIS diffusion process in a contact nework

Dynamic networks ... diffusion networks

A dynamic process on a static network

An epidemic simulation of an recurrent epidemic (SIS)
... during a period of time

Source: research work at CMLA

Dynamic networks

... diffusion networks

Obesity as a contagion In a social network
... in period of 32 years

Source: N.A. Christakis et al. (2007). The Spread of Obesity in a Large Social Network over 32 Years, N.E.J. of Medicine

Dynamic networks ... transportation networks

Line J of Transilien
... during one day

Discussion
Q \& A

