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Background
1. Motivations

Previous work in change-point detection
I Offline detection Truong et al. [2020]
I Online detection: Aminikhanghahi et al. [2016]

Tartakovsky [2020]
I Application examples: speech recognition, climate

change evaluation, medical condition monitoring.

Main contribution
An offline change-point detector using tools coming
from Graph Signal Processing to automatically infer
the number of change-points, their location in the
graph, and a sparse representation of the mean vector
based on the input graph structure.

2. Problem statement

A stream of graph signals (SGS) Y is observed over
the same graph G of p vertices. Let Y = {yt}Tt=0,
where ∀t : yt ∈ Rp, and also µt = E[yt] is its unknown
mean value. These expected values are the rows of
matrix µ ∈ RT×p. Let an unknown ordered set
τ = {τ0 = 0, ..., τd = T} ⊂ {0, ..., T} indicating
d + 1 change-points.
Hypothesis: the expected values in each of the
segments induced by τ remain constant.
Goal: Infer the set of change-points τ and the µ that
will be an element of the space:

Fτ = {µ ∈ RT×p | µτl−1+1 = ... = µτl,∀τl ∈ τ\{0}}.

Figure: Example stream of graph signals (SGS) with five
change-points in the mean.

Methods
3. Basic Concepts

1. A graph shift operator (GSO) S associated with a graph
G = (V,E), is a p× p matrix whose entry Si,j 6= 0 iff i = j or
(i, j) ∈ E, and it admits an eigenvector decomposition S = UΘU∗.

2. The Graph Fourier Transform (GFT) of a graph signal
y : V → R is defined by ỹ = U∗y.

3. A zero-mean graph signal y : V → R with covariance matrix Σy is
stationary with respect to the vertex domain encoded by S,
iff Σy and S are simultaneously diagonalizable: Σy = U diag(Py)U

∗.
The vector Py ∈ Rp is graph power spectral density (PSD).

4. Our method

Algorithm: Variable Selection-based GS change-point detector (VSGS)
Input :Y ∈ RT×p representing the stream of the graph signals

dmax: Maximum number of change-points
w: length of the warming period
U : eigenvectors of the GSO
Λ: penalization constants associated the sparsity of the GFT of µ

Output : d̂, τ̂ (d̂) : number of change-points, set of change-points
ˆ̃µτ̂(d̂) ∈ Rd̂×p with rows being the GFT of the mean in each segment

1 Estimate the GFT of the dataset Ỹ = Y U
2 Compute an estimation of Py using w observations Perraudin [2017].
3 for λ ∈ Λ do

4 Solve the Lasso problem: µ̃Lasso := arg min
µ̃∈RT×p
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5 Define Dmλ
:= ‖µ̃Lasso‖0 and S(Dm,τ ) := {µ̃∈Fτ | µ̃τl∈SDm

,∀l∈{1, ..., d}},
where SDm

the space generated by m specific elements of the standard basis of Rp.
6 for d ∈ {1, ..., dmax} do
7 Solve the change-point detection problem via dynamic programming
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8 end
9 end

10 Find K1, K2, K3 using the slope heuristic (Arlot et al. [2019]) and solve:

(λ̂, d̂) := argmin
λ∈Λ,

d={1,...,dmax}

CLSE(τ̂ (d,Dmλ
), ˆ̃µLSE

τ̂ (d,Dmλ
)) + K1

Dmλ

T + d
T

(
K2 + K3 log T

d

)
11 Keeping the segmentation τ̂ (d̂, D̂mλ̂

) and λ̂ fixed, recover ˆ̃µτ̂(d̂) via
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12 Return τ̂ (d̂, D̂mλ̂
) and ˆ̃µτ̂(d̂)

Results
5. Theoretical Results

Let τ̂ and ˆ̃µτ̂ be solutions to the optimization problem:

argmin
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where T d is the set of all possible segmentations of length d and Dm is the number non-zero entries of the
GFT. Then, there exist constants K1, K2, K3 defining the penalty term for all (m, τ ) ∈M , where
M ⊂ {1, ..., p} × T , and there exists a positive constant C(K), and K > 1 a given constant, such that:
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where T is the set of all possible segmentations of the SGS, γ = 1
K(
√

log p + L−
√

log p + log 2).

6. Experiments

We tested our method using synthetic graph signals on two random and one real graph. The signals are
generated differently (wrt noise distribution and the nature of the change) in each of the three scenarios.
More details and results are provided in main document.

Scenario # Nodes, Noise distribution Graph Hausdorff (↓) Rand (↑) Recall (↑) Precision (↑) F1 (↑)
Segments

I 100,5 Uniform with unit variance Erdos–Rényi 1.73 (70.88) 0.99 (0.02) 1.00 (0.05) 0.88 (0.13) 0.93 (0.08)

II 100,3 Standard Normal Barabasi-Albert 1.57 (07.28) 0.99 (0.01) 1.00 (0.00) 0.98 (0.07) 0.99 (0.04)

I 500,3 Uniform with unit variance Erdos–Rényi 6.29 (17.13) 0.98 (0.04) 0.97 (0.11) 1.00 (0.05) 0.98 (0.09)

II 500,5 Standard Normal Barabasi-Albert 12.48 (16.54) 0.96 (0.06) 0.89 (0.16) 1.00 (0.00) 0.93 (0.09)

I 1000,5 Uniform with unit variance Erdos–Rényi 7.36 (23.46) 0.98 (0.07) 0.96 (0.12) 1.00 (0.00) 0.98 (0.09)

II 1000,3 Standard Normal Barabasi-Albert 33.81 (17.05) 0.89 (0.05) 0.71 (0.12) 1.00 (0.00) 0.83 (0.08)

III - 5 rand. regions 2642,3 Student-t Minnesota Road 120.81 (63.38) 0.82 (0.09) 0.60 (0.20) 1.00 (0.00) 0.73 (0.13)

10 rand. nodes Network

III - 10 rand. regions 2642,3 Student-t Minnesota Road 8.85 (32.28) 0.99 (0.04) 0.97 (0.12) 1.00 (0.00) 0.98 (0.08)

20 rand. nodes Network

III - 20 rand. regions 2642,3 Student-t Minnesota Road 0.72 (00.45) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

40 rand. nodes Network

7. Conclusions

I Our method exploits the interplay between the graph structure and multivariate time series thanks to the
concept of graph stationarity.

I Our model-selection framework allows the automatic inference of i) the relevant parameters for the
recovery of the number of change-points and ii) a sparse representation of the graph signals.

I By combining techniques coming from Graph Signal Processing and model-selection, we defined a
tractable formulation of the problem and obtain theoretical guarantees for the performance of our method.
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