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ABSTRACT
Clinical datasets usually carry numerous features (biomarkers, char-
acteristics, etc.) concerning the examined populations. This fact,
although beneficial, challenges the statistical analysis via standard
univariate approaches. In the two-sample setting, the majority of
the clinical studies evaluate their assumptions relying on a variety
of available univariate tests, such as the Student’s t-test or Mann-
Whitney Wilcoxon. We developed an easy-to-use-and-interpret non-
parametric two-sample hypothesis testing framework (ts-AUC)
particularly using machine learning and the AUC maximization
criterion. We test and verify the effectiveness of ts-AUC in real data
containing posturographic features of Parkinsonian patients (PS)
with and without history of falling.
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1 INTRODUCTION
Clinical research often needs to find the significant differences
between two groups of individuals (e.g. patients vs. healthy sub-
jects). Researchers usually compute several features using signal
processing and data mining techniques, and evaluate their use-
fulness relying on a variety of available univariate tests, such as
the Student’s t-test. Typically, multiple univariate tests are applied
consecutively in order to find the statistically significant features.
The aforementioned multiple testing scheme has been part of a
well-known scientific debate [8], mainly criticized for the increased
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probability of reporting a false-positive finding [8]. Thus, many bio-
statisticians recommend to disclose all the analyses that have been
done, not only the significant ones. The violation of this recommen-
dation and the regular misuse of those tests [15] combined with
the relatively small available cohorts, may lead to false conclusions
and as a consequence to a significant lack of clinical consensus or
at least delay in reaching it. Well-known adjustments have been
proposed in order to limit the aforementioned probability of a false-
positive finding, such as Bonferroni correction, although they have
been reported as conservative compromises due to the significant
increase of the probability for false-negative output [8].

The machine learning community has recently made significant
progress in this topic [4, 10], especially related to the design of
appropriate criteria for the characterization of the ranking perfor-
mance and/or meaningful extensions of the empirical risk mini-
mization approach to this framework [1, 5]. In many of these efforts,
the well-known criterion of the area under the ROC curve (AUC)
is considered as the gold standard for measuring the capacity of a
scoring function to discriminate groups of populations [16]. Unfor-
tunately, to the best of our knowledge, these novel advancements
remain largely unexploited by the clinical communities.

The study’s objective is to propose an easy-to-use-and-interpret
two-sample hypothesis testing framework, orienting to clinical
research. We propose a new variation of a multivariate two-sample
test through AUC maximization [16]. Its effectiveness is tested
using a multidimensional dataset that comes from the postural
control assessment of patients with Parkinsonian syndromes (PS).

A standard way to assess postural control is using a force plat-
form. A force platform records the displacement of the center of
pressure (CoP) applied by the whole body during a session of mea-
surement, while the individual stands upon it and follows the clini-
cian’s instructions. It has been shown that CoP trajectories (also
called statokinesigrams) reflect individuals’ postural impairment
when special acquisition protocols are followed [13, 14]. The dataset
we use includes two groups: fallers (PSF) and non-fallers (PSNF).
This work highlights the benefits that one can have by using such
kind of two-sample analysis in the presence of multiple features,
and demonstrate the contradicting conclusions that a traditional
statistical analysis might have had.

2 THE MULTIVARIATE TS-AUC TEST

Prior work. A key element of [16] is that the empirical AUC
may be viewed as the Mann-Whitney statistic of a multivariate
sample. They investigate the theoretical basis of how the rank-
based test approach for homogeneity testing between two samples
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Figure 1: Scheme of the ts-AUC algorithm. In order to find the AUC∗ (maximal AUC), numerous Random Forests (RFs) are developed. For RF∗

with AUC∗, the univariate Mann-Whitney Wilcoxon test is applied on the whole population’s average positive posterior probabilities.

can be extended to a multidimensional setting. They propose a
two-stage testing method based on data splitting. A nearly optimal
scoring function in the AUC sense is first learned (greedy approach)
from one half-sample. The remaining half-sample is then ranked
according to the first stage’s scoring function and a univariate
Mann-Whitney Wilcoxon (MWW) two-sample test is applied.
Our proposed variation. The ts-AUC test, is based on a bootstrap
aggregation, in particular over a random forest (RF) [3]. Therefore,
in the development of each decision tree (DT), only a part of the
whole dataset does participate (in-bag) while the other part is left
out (out-of-bag, or OOB). The OOB subset is used as test-set for the
particular DT. In our approach, instead of the originally proposed
testing method based on data splitting, we used the predictions of
the OOB population [7]. Every time an individual is part of an OOB
set, the corresponding DT outputs the probability of being a PSF
or a PSNF. This is computed as the fraction of individuals of the
positive class (fallers) in the tree leaf where each individual reaches.
Thus, his/her final score is given by the average of the posterior
probabilities over the trees he/she was part of the OOB set (see
Fig. 1).

The averaged posterior probabilities (𝑃 ) of the positive class
(fallers) are used in order to compute the Mann-Whitney 𝑈 -test
statistic, denoted by𝑈 as proposed in the theoretical work of [16] .
The empirical AUC for the chosen hyper-parameters is given by

𝑈
𝑁fallers ·𝑁non-fallers

. Briefly, the null hypothesis, H0, and the alternative
one, H1, are expressed as:

“ H0 : AUC∗ =
1
2
” vs. “ H1 : AUC∗ >

1
2
”. (1)

When searching for the empirical AUC∗ (i.e. the maximal AUC),
the hyper-parameters with respect to which we need to optimize
are the leaf-size 𝐿𝑆 and the number of features per tree 𝑀 (see
a comment about the computational cost in the Appendix file -
www.bargiotas.com/material). We avoid a greedy approach and use
instead a Bayesian optimization process. The averaged posterior

probabilities of the Star Model, where AUC = AUC∗, are used to
compute the scoring function (and the 𝑝-value) through a univariate
MWW test on the whole available dataset. Fig. 1 and Alg. 1 provide
a schematic and algorithmic view of our statistical testing process
that uses a bootstrap aggregation over an RF.
Feature importance. Additionally, the proposed algorithmic mod-
ifications allow the assessment of the importance of each feature to
the ts-AUC final decision. We followed the procedure proposed in
[9] for interpretation purposes, in order to identify all the important
features, even some of those which are redundant/collinear. Briefly,
we computed the AUC of the OOB (AUCOOB) of RFs starting from
the most important feature (see OOB feature importance by feature
permutation [3]), adding progressively all the others in descend-
ing importance order. The best model is the smallest model (less
features) with an AUCOOB higher than the maximum AUCOOB
reduced by its empirical standard deviation (based on 20 runs).

3 EXPERIMENTS
Dataset. Our dataset comes from the Neurology department of the
HIA, Percy hospital (Clamart, France), and includes 123 PS patients
(36 women, 24/99 fallers/non-fallers, 78.7 ± 5.4 years-old – see Tab.
1 in the Appendix (www.bargiotas.com/material) for more details).
Following the acquisition protocol, patients removed their shoes
and maintained an upright position on a force platform keeping
their arms at the sides. The CoP trajectory was recorded twice, with
eyes open and eyes closed, for 25 seconds1.

Statokinesigramswere acquired using aWii Balance Board (WBB)
(Nintendo, Kyoto, Japan), a suitable and convenient tool for the clin-
ical setting [12]. Since the WBB records the CoP trajectories at
non-stable time resolution, the acquired statokinesigrams are re-
sampled at 25Hz using the SWARII algorithm [2]. Participants were
1The clinical trial (ID RCB 2014-A00222-45) was approved by Ethical Research Com-
mittees (CPP), Ile-de-France, University Paris VI. A written informed consent was
obtained from all participants.

www.bargiotas.com/material
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Algorithm 1 The proposed ts-AUC statistical test.
Input: 𝑋 and 𝑌 are the points’ coordinates of the trajectory

(statokinesigram);
𝐿𝑆 ,𝑂𝑂𝐵,𝑀 are vectors with the required hyper-parameters.

Output: 𝐴𝑈𝐶∗, 𝑅𝐹 ∗, 𝑃∗, 𝑝-value∗.

Step 1: Exploration of the space of hyperparameters

1: for 𝑖 ∈ 𝐿𝑆 do
2: for 𝑗 ∈ 𝑀 do
3: 𝑅𝐹 = RandForest (𝑋,𝑌, 𝐿𝑆𝑖 , 𝑀𝑗 )
4: 𝑃 = OOBpredict (𝑅𝐹𝑖,𝑗 )
5: 𝑈 = Mann_Whitney_Utest_Statistic (𝑃 )
6: 𝐴𝑈𝐶𝑖,𝑗 = AUCestimation (𝑈 ,𝑌 )
7: end for
8: end for

Step 2: Choose the best model and apply MWW

9: (𝑖∗, 𝑗∗) = argmax𝑖∈𝐿𝑆,𝑗∈𝑀 𝐴𝑈𝐶𝑖,𝑗

10: 𝐴𝑈𝐶∗ = 𝐴𝑈𝐶𝑖∗, 𝑗∗

11: 𝑅𝐹 ∗ = RandForest (𝑋,𝑌, 𝐿𝑆𝑖∗ , 𝑀𝑗∗ )
12: 𝑃∗ = OOBpredict (𝑅𝐹 ∗)
13: 𝑝-value∗ = MWW (𝑃∗, 𝑌 )

labeled as fallers (PSF) if they had come to a lower level near the
ground unintentionally at least once during the last six months
[17]. Our analysis included only CoP trajectories’ features that have
been previously proposed by clinicians as indicators of postural
impairment [14] (see Tab. 2 in Appendix for details).
Compared methods and settings. We compare the results ob-
tained by the proposed ts-AUC with the Maximum Mean Discrep-
ancy test (MMD) [10], which is a well-established multivariate
test and state-of-the-art in terms of performance. We also com-
pare with standard statistical testing approaches, which are usu-
ally employed in clinical studies. We check the 𝑝-values of all 17
features (i.e. 𝐷 = 17) with the labels {‘faller’, ‘non-faller’} using
the non-parametric MWW test. Clinicians would typically report
those features that were found statistically significant (e.g. with
𝑝-value < 𝛼 = 0.05) and any interesting non-significant finding.

In order to prevent the increase of the false positive probability,
𝑝-value adjustment procedures are applied. We use the Bonferroni
correction, which is the most widely used 𝑝-value adjustment in
biomedical research. Finally, we assess the effect of population size
to the final result. We progressively reduce, uniformly at random,
the number of PSNF by a step of 10% (95% to 35%). All fallers were
included, the test run 12 times and the percentages of significant
results were compared (see Fig. 2).

3.1 Results
The ts-AUC and the MMD tests were applied to features derived
from Eyes-Open and Eyes-Closed acquisitions separately. Both
tests agreed that only the features derived by statokinesigrams of
Eyes-Open significantly separated PSF from PSNF. Therefore, we
will henceforth continue by presenting detailed analysis only for
Eyes-Open features.

The most influential features were found to be the VelocityY,
VarianceY, AccelerationY, EllArea (Confidence Ellipse area) and

Table 1: Significant and non-significant results of a univariate two-
sample Mann-Whitney Wilcoxon (MWW) test, and the 𝛼 level of
significance before and after Bonferroni correction.

Feature 𝑝-value
MWW

𝛼 level before
correction

𝛼 level after
correction

EllArea 0.0045 0.05 0.0029
VarianceY 0.006 ≫ 0.0029
MaxY 0.006 ≫ 0.0029
DistC 0.007 ≫ 0.0029
RangeY 0.008 ≫ 0.0029
VelocityY 0.009 ≫ 0.0029
MaxX 0.03 ≫ 0.0029
RangeX 0.04 ≫ 0.0029
VarianceX 0.04 ≫ 0.0029
MinY 0.04 ≫ 0.0029

MinX >0.05 ≫ -
- -

VelocityX ≫ ≫ -
AccX ≫ ≫ -
F95X ≫ ≫ -
AccY ≫ ≫ -
F95Y ≫ ≫ -
AngularDev ≫ ≫

Each MWW 𝑝-value is compared horizontally with the corresponding 𝛼 ’s.

MaxX in descending order. Tab. 1 indicates those features that showed
𝑝-value < 0.05 and the decisions regarding statistical significance
obtained after applying Bonferroni correction. In every row of
Tab. 1, values at column 1 (𝑝-values) were compared one by one to
values at columns 3 of the same row (Bonferroni) and were found
always higher. By these results, none of the features would reject
the H0 of two-sample MWW test.
Effect of population size. The population decrease through non-
faller exclusion had an important effect to the performance of all
tests. MMD and ts-AUC showed similar behavior. Specifically, the
number of times that fallers/non-fallers were found statistically dif-
ferent was gradually decreasing. Multiple univariate testing showed
most of the times that the groups could no be considered as statisti-
cally different.

4 DISCUSSION
The objective of this study was to introduce an easy, interpretable,
and intuitive multivariate two-sample testing strategy for clinical
research. It was shown that: a) the novel multivariate two-sample
testing approach, ts-AUC, had equal performance with the state-of-
the-art MMD test, with the additional element of providing feature
importance assessment without further analysis, and b) the ts-AUC
and the standard statistics (usually used in clinical studies), when
both applied to the dataset of PS patients lead to contradictory
conclusions. This disagreement seems to be linked to the relative
conservatism of the traditional 𝑝-value correction strategies (in-
crease of probability of false-negative findings) [8]. The medio-
lateral movement has been reported as the most discriminative
element between PS patients and age-matched controls [13] and
seems that play a role in distinguishing fallers and non-fallers PS pa-
tients. However, the key-difference between fallers and non-fallers
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PS was spotted in antero-posterior movement. Inreased antero-
posterior movement was previously reported in PS patients while
quiet standing with eyes open [11].

The use of OOB observations as cross-validation method has two
basic advantages: a) provides faster results in the AUCmaximization
process, and b) allows the final MWW test to be applied once to
the whole dataset, which is more intuitive for clinicians.

Concerning the unbiased feature importance, we believe that
this addition is a cornerstone of the proposed approach and inline
with the current clinicians’ needs. While they need to know if
two groups are (or are not) significantly separated, they are also
interested to know the most influential features that lead to the
reported result. Although the algorithm offers this convenience, we
need to note that feature importance should be treated with extra
care. The proposed approach tries to minimize the false conclusions
concerning the importance of features when redundant features are
present. According to [9], some of the collinear features (relevant to
the phenomenon) will be in the final selection, and others will not.
This issue is still under research and the current ts-AUC framework
can integrate better solutions in the future. A general advice to
clinicians can be to check for features exhibitingmutual information
before the beginning of the testing process.

Interestingly, the gradual balancing (and decreasing of subset)
between the groups of fallers and non-fallers, showed that the pro-
posed test is less conservative than the multiple testing process
(with correction). It would be fare to say that ts-AUC combines
robustness while boosting the interpretability of the result. Ex-
ploratory studies, where a hypothesis about the structure of the
dataset is not strictly defined in advance, could benefit from such
multivariate approaches.

A methodological limitation of our study is that our dataset is
slightly imbalanced, with many negative examples and few positive
ones. In this case, metrics other than AUC (e.g. precision-recall
(PR) curve, F1 score or area under the PR curve) could be more
appropriate for avoiding possible overfitting [6]. We decided to
keep the AUC criterion, as in [16], not only due to its theoretical
association with the U-statistic, but also to fulfill one of our main
objectives: to propose an algorithm as understandable, interpretable,
and easy-to-implement as possible.

5 CONCLUSIONS
In this paper we showed that using the proposed ts-AUC two-
sample test, which is a method oriented to clinical research, fall-
ers and non-fallers patients who suffer from Parkinsonian syn-
dromes (PS) can be distinguished by examining posturographic
features that are derived following the basic Romberg protocol.
This new approach was also able to reveal the posturographic fea-
tures that are significantly different between the two groups (i.e.
more discriminative). The separation appeared statistically less
detectable when using traditional approaches such as multiple test-
ing. Supplementary material about the algorithm, can be found at
www.bargiotas.com/material. The results of our study highlighted
that the ts-AUC, and other new multivariate methods based on
machine learning, can play an important role in evaluating the
usefulness of simple and inexpensive acquisition protocols as well
as the extracted posturographic features.
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Figure 2: The average performance of two-sample testing ap-
proaches with smaller non-fallers population. ts-AUC and MMD
have almost equal performance.
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