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Abstract

We introduce the class of priority planning strategies for suppressing SIS epidemics in a network that performs
dynamic allocation of treatment resources with limited efficiency to the infected nodes, according to a precomputed
priority-order. Then, using recent theoretical results that highlight the role of the maxcut of a node ordering and

the extinction time of an epidemic, we propose a simple and efficient strategy called MaxCut Minimization
(MCM) that outperforms competing state-of-the-art strategies in simulated epidemic scenarios that include artificially
generated networks as well as real transportation networks.

Background
1. Motivation

Applications of Diffusion Control in Networks
I Epidemiology: Limiting the spread of a disease in a population.
I Marketing: Increase product adoption in a community.
I Rumor spread: Preventing false rumors from reaching a large audience by

providing good information to key users of a social network.

Related Work: CURE policy [1], Activity shaping in SNs [2]. [6]

2. SIS epidemic and control model

Notations
Let G = (V , E) be an undirected graph of size N , and A its adjacency matrix.
An SIS epidemic is described by the network state vector X(t) ∈ {0, 1}N .
A control action is described by a resource allocation vector ρ(t) ∈ RN

+ .

Diffusion model
Following the formalism of [3], we model an epidemic under a control action
as a stochastic process with the following transition rates:

Xi(t) : 0→ 1 at rate β
∑

j AjiXj(t);

Xi(t) : 1→ 0 at rate δ + ρi(t),
(1)

where β≥ 0, δ≥ 0 are the transmission and recovery rates of the epidemic.

Control model
We impose three constraints on the resource allocation vector ρ(t):
I Causality: ρ(t) should only depend on past values of X(t),
I Limited budget:

∑
i ρi(t) ≤ r,

I Limited efficiency: ∀i, ρi(t) ≤ ρ.

3. Maxcut of a priority-order

A priority-order ` : V → {1, ..., N} is a node ordering that describes the order
in which an epidemic should be removed from the network, and its maxcut is:

C∗(`) = max
c=1,...,N

∑
i,j

Aij1{`(vi) < c ≤ `(vj)}. (2)
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(a) Priority-order ` : V →{1, 2, 3, 4, 5}
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cut = 3(b) Priority-order `′ : V →{1, 3, 4, 2, 5}
Figure: Two priority-orders (from left to right) leading to different maxcuts: C∗(`) = 3 for (a) and C∗(`′) = 1 for

(b). The cut (vertical red line) separates the nodes in two sets (white are healthy, and red are infected). The

second priority-order `′ is optimal and the network has a cutwidth W =1 (the minimum C∗(`) for any ordering `).

The MCM algorithm
4. Priority planning

The introduced approach distributes resources to the top-q infected nodes
according to a fixed priority-order ` of the nodes in V . The allocated
amount of resources should match the available resource budget r, thus
q= min{drρe,

∑
iXi(t)}. The resource allocation vector is then defined as:

ρi(t) =

{
r
drρe

if Xi(t) = 1 and `(vi) ≤ θ(t);

0 otherwise,
(3)

where θ(t) is a threshold adjusted s.t.
∑

i 1{ρi(t)>0}= q.

5. The MCM algorithm

I Prior to the diffusion process: Given a network G, we compute, a
priority-order `

MCM
(G) with minimum maxcut C∗(`):

`
MCM

(G) = argmin
`
C∗(`). (4)

I During the diffusion process: MCM distributes the resource budget to the
infected nodes according to the order `

MCM
(G).

6. Practical implementation

Relaxation of the optimization problem
Minimizing the maxcut is a very hard combinatorial problem. We relax it to
the Minimum Linear Arrangement problem which optimizes the meancut:

MLA: argmin
`

1

N

∑
c=1,...,N

∑
i,j

Aij1{`(vi) < c ≤ `(vj)}. (5)

Computation of the optimal priority-order

The MLA problem solver that we developed for our simulations follows the
steps below and uses a hierarchical approach to take advantage of the group
structure of social and contact networks:

I First, we identify dense clusters by applying spectral clustering and we order
those clusters (considered as high-level nodes) using spectral sequencing [4].

I Then, we compute a good ordering of the nodes inside each cluster
independently using spectral sequencing followed by an iterative approach
which is based on random node swaps (swap heuristics inspired by [5]).

I Finally, we place and orient properly the clusters’ node segments and reapply
the same swap-based approach as step two to refine the overall ordering.

Experiments
7. Control of simulated epidemics
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(a) high infectivity: β =10
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(b) low budget: r=100
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(c) low budget: r=3000
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(d) low infectivity: β =0.1
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(e) high budget: r=250
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(f) high budget: r=7000

Comparison between resource

threshold and maxcut (N=1000).

Simulations on a road network
(GermanSpeedway, N=1168).

Simulations on an air traffic net-
work (OpenFlights, N=2939).

8. Discussion on results

I Very good correlation was observed between the maxcut and the resource
budget r∗ beyond which the epidemic is suppressed.

I The maxcut can be used as a quality metric for any priority-planning.

I MCM strategy outperforms its competitors in simulated epidemics on real
transportation networks.
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