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Abstract

In this paper, we present a framework for fitting multivariate
Hawkes processes for large-scale problems, both in the num-
ber of events in the observed history n and the number of
event types d (i.e. dimensions). The proposed Scalable Low-
Rank Hawkes Process (SLRHP) framework introduces a low-
rank approximation of the kernel matrix that allows to per-
form the nonparametric learning of the d2 triggering kernels
in at most O(ndr2) operations, where r is the rank of the ap-
proximation (r� d, n). This comes as a major improvement
to the existing state-of-the-art inference algorithms that re-
quire O(nd2) operations. Furthermore, the low-rank approx-
imation allows SLRHP to learn representative patterns of in-
teraction between event types, which is usually valuable for
the analysis of complex processes in real-world networks.

Introduction
In many real-world phenomena, such as product adoption or
information sharing, events exhibit a mutually-exciting be-
havior, in the sense that the occurrence of one event can in-
crease the occurrence rate of other events. In the field of in-
ternet marketing, a client’s purchasing behavior on one on-
line shopping website can be, to a large extent, predicted
by his past navigation history on other websites. In finance,
arrivals of buying and selling orders for different stocks
convey information about macroscopic market tendencies.
In the study of information propagation, users of a social
network share information, which leads to information cas-
cades spreading throughout the social graph. Over the past
few years, the study of point processes gained attention
as the acquisition of such datasets by companies and re-
search laboratories became simpler. However, the traditional
models for time series analysis, such as discrete-time auto-
regressive models, do not apply in this context due to the
fact that events happen in a continuous way.

Multivariate Hawkes processes (MHP) [1, 2] have
emerged in several fields as the gold standard to deal with
such data, e.g. earthquake prediction [3], biology [4], finan-
cial [5, 6], and social interactions studies [7]. For MHP, an
event of type u (e.g. a visit to a product’s website) occur-
ring at time t, will increase the conditional occurrence rate
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of events of type v at time s≥ t (e.g. purchases of that prod-
uct in the future) by a rate guv(s− t). Despite these pro-
cesses have been extensively studied from the probabilistic
point of view (stability [8], cluster representation [9]), their
application to real-scale datasets remains quite challenging.
For instance, social interactions data is at the same time big
(large number of posts), high-dimensional (large number of
users), and structured (social network).

Several nonparametric estimation procedures have been
proposed for MHP. relying on approaches such as moment
matching [10, 11], least-squares error minimization [12],
or log-likelihood maximization [13]. Regardless to the ap-
proach each of those works adopts, the dependence of the
stochastic occurrence rate at a given time on all past occur-
rences, and the fact that all d2 triggering kernels guv need to
be estimated, do imply that all these methods are quadratic
in the number of events n as well as the number of dimen-
sions d. Therefore, they quite impractical for large datasets.
Subsequent works aimed naturally at increasing scalability.
In order to reduce complexity towards O(n), a nonpara-
metric estimation procedure linear in the number of events
was proposed in [14], relying on the memoryless property
of Hawkes processes with exponential triggering kernels,
thus achieving an overall complexity of O(nd2). Moreover,
several other works [15, 16, 17] managed a complexity in
O(n2d) by imposing a low-rank structure to the amplitude
of the mutual excitation, while keeping a fixed temporal ex-
citation pattern. Although these methods may exhibit a lin-
ear complexity in d, they only impose a community structure
to the network via a low-rank assumption on the adjacency
matrix, instead of learning an excitation function for each
group independently. Note that this difference is significant
since learning independent excitation functions allows to un-
cover groups of users sharing a similar “role” (e.g. influencer
vs influencee), instead of mere clusters of densely connected
nodes in the network.

In this paper we introduce the Scalable Low-Rank Hawkes
Processes (SLRHP) model for structured point processes,
relying on a low-rank decomposition of the triggering ker-
nel, that aims to learn representative patterns of interaction
between event types. We also provide the first inference al-
gorithm for SLRHP that has linear complexity in the total
number of events and number of event types (i.e. dimen-
sions), that isO(nd). The inference is performed by combin-



ing minorize-maximization and self-concordant optimiza-
tion techniques. In addition, if the underlying network of
interactions is provided, then SLRHP is capable of fully ex-
ploiting the network sparsity, which renders it practical for
large structured datasets. The major advantage of the pro-
posed SLRHP algorithm is the ability to scale-up to datasets
much larger than existing state-of-the-art methods, while
achieving performance very close to state-of-the-art com-
petitors (in terms of prediction and inference accuracy) on
synthetic as well as real datasets.

Setup and Notations
A multivariate Hawkes process (MHP) N(t) = {Nu(t) :
u= 1, ..., d, t≥ 0} is a d-dimensional counting process,
where Nu(t) is the number of events along dimension
u which occurred during time [0, t]. We call as event of
type u an event that occurs along dimension u. Each one-
dimensional counting process Nu(t) can be influenced by
the occurrence of events of other types. Without loss of
generality, we consider that these mutual excitations take
place along the edges of an unweighted directed graph
G= (V, E) of d nodes and adjacency matrix A∈{0, 1}d×d.
Note that this setting includes in particular the standard def-
inition of multivariate Hawkes processes. Finally, let H :
(um, tm)nm=1 be the event history of the process indicat-
ing for each event m its type um and occurrence time tm.
The non-negative stochastic occurrence rate of each Nu(t)
is then defined by:

λu(t) = µu(t) +
∑

m:tm<t

Aumu gumu(t− tm). (1)

In the above, µu(t)≥ 0 is the natural occurrence rate of
events of type u (i.e. along that dimension) at time t, and
the triggering kernel function evaluation gvu(s− t) ≥ 0 de-
termines the increase in the occurrence rate of events of type
u at time s, caused by an event of type v at a past time t≤ s.

The natural occurrence rates µu and triggering kernels
gvu are usually inferred by means of log-likelihood maxi-
mization. The main practical issue for inferring the param-
eters of the model in Eq. 1 is that it requires a particularly
large dataset of observations, as standard inference algo-
rithms require at least one observation per pair of event types
(i.e. d2 observations).

In many practical situations, the underlying network of in-
teractions is unknown. In this case, the model to use will be
a standard multivariate Hawkes process, which corresponds
to taking Auv = 1 for every pair of event types (u, v), and
the inference procedure proposed in this paper will discover
by itself which interactions are non-negligible. However, the
reason for which we use an adjacency matrix in our defini-
tion is that we show in the following that our model can
take advantage of additional information on the support of
interactions if provided. In any case, we point out that the
applicability of our method is not conditioned on previous
knowledge of the support of interactions and that we do not
aim to perform network inference, as in [18] whose goal is
to learn a sparse and low-rank support of interactions given
a parametric form of the triggering kernels.

Scalable Low-Rank Hawkes Processes
The proposed model
Model considerations. Standard MHP inference requires
the learning of d2 triggering kernels that encode the cross-
and self-excitement of the event types. Apparently, it be-
comes prohibitive to satisfy this requirement as d gets larger
(e.g. when the dimensions represent the users of a social net-
work, or websites on the Internet). However, in a number
of practical situations, the d2 complex interactions between
event types can be summarized by considering that there is
a small number of r event groups and each event type is
related to each of those groups to a certain extent. There-
fore, one needs to simultaneously learn a d× r event type-
to-group(s) mapping (we specifically use soft assignments)
as well as the r2 interactions between pairs of event groups.
Model formulation. Scalable Low-Rank Hawkes Processes
(SLRHP) simplify the standard inference process by project-
ing the original d event types (i.e. dimensions) of a mul-
tivariate Hawkes process into a smaller and more compact
r-dimensional space. The natural occurrence rates µu and
triggering kernels gvu of Eq. 1 are then defined via the low-
rank approximation:

µu(t) =
∑r
i=1 Pui µ̃i(t);

gvu(t) =
∑r
i,j=1 Pui Pvj g̃ji(t),

(2)

where u, v are event types, P ∈Rd×r+ is the projection
matrix from the original d-dimensional space to the low-
dimensional space, and i, j are its component directions.
Besides, this projection can be seen as a low-rank approx-
imation of the kernel matrix g since, in matrix notations,
g=P g̃P> and g̃ ∈Rr×r+ is a matrix of size r� d.

Then, the SLRHP occurrence rates are formulated as an
extension of Eq. 1 that uses an embedding of event types in
a low-dimensional space:

λu(t) =

r∑
i=1

Pui µ̃i(t)

+
∑

m:tm<t

r∑
i,j=1

Pui Pumj Aumu g̃ji(t− tm).

(3)

Specifically, if the projection of event type u along the di-
mension i is given by Pui, then essentially the event type u
inherits the natural occurrence rate of events of the compo-
nent µ̃i with multiplicative weight Pui, that is

∑r
i=1 Puiµ̃i.

In addition, if the projection of event type v along each di-
mension j is given by Pvj , then v’s effect on event type u
can be evaluated by

∑r
i,j=1 PuiPvj g̃ji.

Provided that r� d, the proposed SLRHP is a simple
and straightforward way to: i) impose regularity to the in-
ferred occurrence rates using constraints to the parameters,
and ii) reduce the number of parameters. Specifically, the d
natural rates and d2 triggering kernels are reduced to r and
r2, respectively, with the only additional need of inferring
the d× r elements of the matrix P .
Remark on the generality and uniqueness of the projec-
tion. Although a projection of the form g=P g̃Q, with



P 6=Q two matrices, is more general than g=P g̃P>, it
turns out that the latter class is not much smaller than the
former. Indeed, any given decomposition P g̃Q of rank r
can be written as a decomposition of rank 2r in the form
P ′g̃′P ′>, where P ′= (P Q) and g̃′=

(
0 g̃
0 0

)
are respectively

of size d× 2r and 2r× 2r. Thus, using one matrix P im-
proves the readability and interpretation of the projection,
while not leading to substantial differences in the perfor-
mance of the algorithm. We also remark that, unless any fur-
ther assumption is made on the projection matrix P or the
low-dimensional kernel g̃, the low-rank decomposition of
the triggering kernel g=P g̃P> is not unique. More specifi-
cally, any change of basis in the r-dimensional space will not
alter the decomposition. Notwithstanding, uniqueness is not
required in order to perform the prediction task, and there-
fore we do not address this issue in the present paper.

Log-likelihood
General formulation. For h= 1, ...,H , let Hh =
(thm, u

h
m)m≤nh be the observed i.i.d. realizations sampled

from the Hawkes process, and H = (Hh)h≤H the recorded
history of events of all realizations. For each realization h,
we denote as [Th−, T

h
+] the observation period, and uhm and

thm are respectively the event type and time of occurrence of
the m-th event. The log-likelihood of the observations is:

L(P,H) =

H∑
h=1

[
nh∑
m=1

lnλuhm(thm) +
∑
u

∫ Th+

Th−

λu(s)ds

]
. (4)

Our objective is to infer the natural rates µ̃i and trigger-
ing kernels g̃ji of Eq. 3 by means of log-likelihood maxi-
mization. From Eq. 3 and Eq. 4, we see that, for arbitrary
g̃ji, a single log-likelihood computation already necessi-
tates O(

∑H
h=1 n

2
h) triggering kernel evaluations. This is in-

tractable when individual realizations can have a number of
events of the order 107 or 108 (e.g. a viral video when mod-
eling information cascades). This issue can be tackled by re-
lying on a convenient K-approximation introduced in [14].
Each natural occurrence rate and kernel function are approx-
imated by a sum of K exponential triggering functions with
γ, δ > 0 fixed hyperparameter values:

µ̂Ki (t) =
∑K
k=0 βi,k e

−kγt;

ĝKji (t) =
∑K
k=1 αji,k e

−kδt,
(5)

Due to the memoryless property of exponential func-
tions, this approximation allows for log-likelihood com-
putations with complexity linear in the number of events,
i.e. O(n=

∑H
h=1 nh). Results of polynomial approxima-

tion theory also ensures fast convergence, with respect to
K, of the optimal µ̂Ki and ĝKji towards the true µ̃i and g̃ji.
For instance, if g̃ji is analytic, then we have for the approx-
imation error: supt∈[0,T ] |ĝKji (t)− g̃ji(t)|=O(e−K) which
means that, for smooth enough functions, setting K = 10 al-
ready provides a good approximation.

We therefore search the values of parameters α, β that
maximize the approximated log-likelihood as well as the

most probable projection matrix P , conditionally to the real-
izations of the process, and under the constraint that the ap-
proximated natural rates and triggering kernels remain non-
negative. At high-level, this is formally expressed as:

arg max
(P,α,β)

L̂(P,H;α, β)

s.t. ∀i, j, t : µ̂Ki (t) ≥ 0 and ĝKji (t) ≥ 0.
(6)

Above, for clarity of notation, we actually reformulate the
log-likelihood by introducing L̂ that makes implicit the de-
pendency of L in the fixed hyperparameters K, δ, and γ
of Eq. 5. Note also that limiting K and r to small values
can be seen as a form of regularization, although more re-
fined approaches could be considered in case of training with
datasets of very limited size.
Simplification with tensor notation. In order to perform in-
ference efficiently, we now reformulate the log-likelihood
using very large and sparse tensors. We also introduce the
artificial (r+ 1)-th dimension to the embedding space in
order to remove linear terms of the equation and store the
β parameters as additional dimensions of α. In detail, let
α(r+1)i,k =βi,k, αj(r+1),k = 0, and P(d+1)i =1{i=r+1} (let
1{·} denote the indicator function), also, ∀u∈{1, ..., d},
Pu(r+1) = 0. The log-likelihood of the model can then be
rewritten as follows:

L̂(P,H;α) =
∑
h,m

ln

 ∑
u,v,i,j,k

Pui Pvj αji,kDh,m,u,v,k


−

∑
h,u,v,i,j,k

Pui Pvj αji,k Bh,u,v,k,

(7)

where

Bh,u,v,k =


∑nh
m=1 Jv,u,mfkδ(T

h
+ − thm) if v≤ d;

fkγ(Th+ − Th−) if v= d+ 1;
0 otherwise,

(8)

Dh,m,u,v,k =


∑nh
l=1 Ih,m,l,u,v e

−kδ(thm−t
h
l ) if v≤ d;

1{uhm=u}e
−kγ(thm−T

h
−) if v= d+ 1;

0 otherwise,
(9)

with fkx(t) = 1−e−kxT
kx , for x in {γ, δ};

Jv,u,m = 1{v=uhm}Avu;
Ih,m,l,u,v = 1{u=uhm ∧ v=uhl ∧ t

h
l <t

h
m}Avu.

What the expression suggests is the possibility to opti-
mize the approximated log-likelihood, according to the dif-
ferent parameters and projection matrices, by first creating
two large and sparse tensors B and D with four and five
dimensions, respectively.

The inference algorithm
The inference is performed by alternating optimization be-
tween the projection matrix P and Hawkes parameters α.
When all other parameters are fixed, the optimization w.r.t. α
is performed using self-concordant function optimization



Algorithm 1 SLRHP Inference: high-level description

Input: H, K, γ, δ, P , α
Output: P , α
1: Compute D and B // see the Appendix
2: for i = 1 to num iters do
3: α = argmaxα L̂(P,H;α)
4: s.t. µ̂Ki ≥ 0 and ĝKji ≥ 0, ∀i, j=1, ..., r

5: P = argmaxP L̂(P,H;α)
6: end for
7: return P, α

with self-concordant barriers. The technical difficulty of this
part is due to the need to ensure that non-negativity con-
straints are respected. For the optimization w.r.t. P , we in-
troduce novel optimization techniques based on a minorize-
maximization algorithm. Alg. 1 outlines the general scheme
of our algorithm and details are provided in the Appendix.
Computing B, D tensors. For the inference algorithm to be
tractable, special attention has to be paid to the computation
of the sparse tensorsB = (Bh,u,v,k) andD = (Dh,m,u,v,k).
Our algorithm has complexityO(nK∆), where ∆ the maxi-
mum node degree in G, and is provided in the Appendix. If G
is sparse, as it is usual for social networks for instance, then
∆� d and hence O(nK∆)�O(nKd). Thus, storing and
computing B and D is tractable for large dense graphs and
for particularly large sparse graphs. Note that, since com-
puting the log-likelihood requires the update of occurrence
rates at each event time, which in turn depends on the oc-
currences of all preceding events, the linear complexity in
the number of events is only possible due to the memoryless
property of the decomposition over a basis of exponentials.
Hawkes parameters optimization. Updating the Hawkes pa-
rameters α requires solving the problem:

α = arg max
α

∑
h,m

ln
(
chm

>
α
)
− b>α

s.t µ̂Ki ≥ 0 and ĝKji ≥ 0, ∀i, j = 1, ..., r

(10)

where chmijk =
∑
u,v Pui Pvj Dh,m,u,v,k;

bijk =
∑
u,v,h Pui Pvj Bh,u,v,k.

For the sake of inference tractability we relax the non-
negativity constraint and only impose it for the observed
time differences:

K∑
k=1

αji,kDh,m,u,v,k ≥ 0. (11)

Then, we approximate the constrained maximization prob-
lem by an unconstrained one, using the concept of self-
concordant barriers [19]: i.e. we choose ε> 0 and solve:

α = arg max
α

∑
h,m

(
ln
(
chm

>
α
)

+ εb(α)
)
− b>α, (12)

where b(α)hm =
∑
i,j,u,v

ln

(
K∑
k=1

αji,kDh,m,u,v,k

)
. (13)

A feature of the optimization problem in Eq. 12 is that
it verifies the self-concordance property. Self-concordant

functions have the advantage of behaving nicely with bar-
rier optimization methods and are among the rare classes
of functions for which explicit convergence rates of New-
ton methods are known [20]. This is the reason why we
chose to perform the unconstrained optimization using New-
ton’s method, which requires O(nKr2 +K3r6) operations.
Note that, since we have n events and aim to learn K
Hawkes parameters per pair of groups, we have necessar-
ily Kr2�n. For the second factor of the expression, if
we do not have K2r4 � n, we can then reduce the com-
plexity by using quasi-Newton methods that necessitates
only O(nKr2 +K2r4) =O(nKr2) operations. The com-
putation of c, b and b(α) requires multiplying sparse ma-
trices of O(nK∆) non-zero elements with a full matrix of
r columns, which yields a O(nK∆r) complexity. Overall,
the complexity of the Hawkes parameters optimization is of
the order O(nKr(∆ + r)).
Projection matrix optimization. Let p be a reshaping of the
projection matrix P to a vector (linearized). Then, p is up-
dated by solving the following maximization procedure:

p = arg max
p

∑
h,m

ln
(
p>Ξhmp

)
− p>Ψp, (14)

where 2 Ξhmui,vj =
∑
k(αji,kDh,m,u,v,k +αij,kDh,m,v,u,k);

2 Ψui,vj =
∑
h,k(αji,kBh,u,v,k + αij,kBh,v,u,k).

The maximization task is performed by a novel minorize-
maximization procedure which is summarized by the fol-
lowing proposition and is proved in the Appendix.
Proposition 1. The log-likelihood is non-decreasing under
the update:

pt+1
ui =ptui

∑
h,m

(Ξhmpt)ui

pt>Ξhmpt(Ψpt)ui

1/2

. (15)

Furthermore, if pui is a stable fixed point of Eq. 15, then pui
is a local maximum of the log-likelihood.

As previously, computing Ξ, Ψ, and all the matrix-vector
products, requires O(nK∆r2) operations, and each up-
date necessitates O(nd) operations. As we consider scenar-
ios where there are at least a few events per dimension,
the total complexity of the group affinities optimization is
O(nK∆r2). In total, the complexity of our optimization
procedure is of the order O(nKσ + nK∆r2) and its be-
havior is linear w.r.t. the number of events and the number
of dimensions.

Experiments
Synthetic data
In this section we illustrate the validity and precision of our
method in learning the diffusion parameters of simulated
Hawkes processes. More specifically, we simulate MHPs
such that event types are separated into two groups of simi-
lar activation pattern. In the context of social networks, these
groups may encode influencer-influencee types of relations.
We show that our inference algorithm can recover the groups
and the corresponding triggering kernels consistently and
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Figure 1. (a) True and inferred triggering kernels g̃ij and natural
occurrence rates µ̃i, for the synthetic dataset. (b) Low-dimensional
embedding of the event types learned by SLRHP in the synthetic
dataset. The two groups (blue and green) of event types are suc-
cessfully identified.

with high accuracy. Note that SLRHP is more generic than
this specific setting we deploy, and this comes from the fact
that there are many notions of ‘data structure’ that can be
captured by the low-rank approximation. However, we be-
lieve that the reported scenario is simple and intuitive, and
may therefore provide a clear overview of the capabilities of
our approach.
Data generation procedure. The employed procedure for
generation of synthetic datasets follows. We assume that the
MHPs take place on a random Erdös-Rényi [21] network of
d= 100 event types whose adjacency matrix A is generated
with parameter p= 0.1 (i.e. 10 neighbors in average). Then,
we consider two distinct groups of event types, and assign
each event type to one of the groups at random. The natural
occurrence rate µ̃i of each group is fixed to a constant value
chosen uniformly over [0, 0.01]. The triggering kernels be-
tween two groups, i and j, are generated as:

g̃ij(t) = νij
sin
(

2πt
ωij

+π
2 ((i+j) mod 2)

)
+2

3(t+1)2 , (16)

where ωij and νij are sampled uniformly over [1, 10] and
[0, 1/50], respectively. These parameter intervals are cho-
sen so that the behavior of the generated process is non-

explosive [22]. The rationale behind the kernels in Eq. 16
is that they present a power-law decreasing intensity that al-
lows long term influence with a periodic behavior. This kind
of dynamics could, for instance, represent the daytime cy-
cles of internet users.
Results. Following the above procedure we generate
8 datasets by sampling 8 different sets of parameters
{(ωij , νij)i≤r,j≤ r, (µ̃i)i≤r}. Finally, we simulate 105

i.i.d. realizations of the resulting Hawkes process, that
we use as training set. The ability of SLRHP to re-
cover the true group triggering kernels g̃ij is shown in
Fig. 1(a) and evaluated by means of the normalized L2 er-
ror: 1

r2

∑
i,j

||ĝij−g̃ij ||2
||ĝij ||2+||g̃ij ||2 . On average, this is only 12.9%,

with minimum 9.2% and maximum 18.9% amongst the 8
sample datasets. Moreover, the figure compares visually the
fitness of the inferred to the true natural occurrence rates and
triggering kernel functions.

In order to find the group assignments, we infer the pa-
rameters of an SLRHP of rank r= 2, and recover the group
structure by a clustering algorithm on the projected event
types. Then, choosing as basis of the two-dimensional space
the centers of the two clusters enables the recovery of the
group triggering kernels. Fig. 1(b) shows the 2D embedding
learned by our inference algorithm for one of the 8 sample
datasets. Two particularly separate clusters appear, which in-
dicates that the group assignments were perfectly recovered.
The other 7 datasets gave similar results. These results pro-
vide strong indication regarding the validity of our algorithm
for inferring the underlying dynamics of MHPs in situations
where there is structure in the interactions between the di-
mensions.

Results on the MemeTracker dataset
Our final set of experiments are conducted on the Meme-
Tracker [23] dataset. MemeTracker is a benchmark corpus
of 9.6 · 106 blog posts published between August 2008 and
April 2009. We use posts from the period August 2008 to
December 2008 as training set, and evaluate our models on
the four remaining months. An event for website u is defined
as the creation of a post on website u containing a hyperlink
towards any other website. We also consider that an edge
exists between two websites if at least one hyperlink exists
between them in the training set. In order to compare the in-
ference algorithms on datasets of different size, prediction
was performed on four subsets of the MemeTracker dataset
(smaller to larger): MT1, MT2, MT3, and MT4. These sub-
sets are created by removing the events taking place on web-
sites that appear less than a fixed number of times in the
training set. This threshold value (thd in Tab. 1) is, respec-
tively, 50000, 10000, 5000, and 1000.
Prediction task. The task consists in predicting the next web-
site to create a post. More specifically, for each event of the
test dataset, we are interested in predicting the website on
which it will take place knowing its time of occurrence. For
MEMIP and SLRHP, the prediction is achieved by scoring
the websites according to λu(tm), since this value is propor-
tional to the theoretical conditional probability for event m
to be of type u. We evaluate the prediction with two met-



Table 1. Experiments on MemeTracker subsets. AUC (%) and Accuracy (%) are reported for predicting the next event to happen, using
SLRHP, MEMIP, and NAIVE approach. The experiments denoted with ‘∗’ did not finish in reasonable time.

Dataset Training Time (secs) AUC Accuracy
Name thd n d SLRHP MEMIP SLRHP MEMIP NAIVE SLRHP MEMIP NAIVE

MT1 50000 7311 13 8.34 3.16 86.3 86.4 86.1 99.2 99.2 93.1
MT2 10000 74474 80 281 7.14 · 103 90.8 92.6 84.4 89.8 92.7 70.6
MT3 5000 277914 172 1.95 · 103 1.74 · 105 86.2 91.9 81.2 87.0 91.6 67.7
MT4 1000 875402 1075 3.77 · 105 * 87.0 * 85.2 84.7 * 81.3
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Figure 2. Experimental results on real data: (a) A plot in log-log scale with the training time (secs) for SLRHP and MEMIP algorithm against
the quantity nd. The linear behavior for SLRHP and super-linear for MEMIP are clearly visible. (b) Sensitivity analysis of SLRHP accuracy
w.r.t. the rank r of the approximation used for inference, and a comparison to the best scores for MMEL and NAIVE baselines on the MT3

dataset. (c) Low-dimensional embedding of the event types learned by SLRHP for the MT3 dataset with r=2.

rics: the area under the ROC curve (AUC) and a classifica-
tion accuracy with a fixed number of candidate types. Due
to the high bias towards major news websites (e.g. CNN),
the number of candidate types has to be relatively large to
see the difference in the performance of algorithms, and we
set this value to 30% of the total number of event types d in
our experiments. This means that we consider a “successful
prediction” if the website that eventually fires was ranked by
an algorithm in the top 30% candidates.
Baselines. In the following experiments, we use as main
competitor the state-of-the-art MEMIP algorithm [14],
which is, to the best of our knowledge, the only inference
algorithm with linear complexity in the number of events n
in the training history. Also, previous work [14] shows that
this algorithm outperforms the more standard inference al-
gorithm MMEL [13] on the MemeTracker dataset. In addi-
tion, we also use the NAIVE baseline which ranks the nodes
according to their frequency of appearance in the training
set. Note that this is equivalent to fitting a Poisson process
and, hence, does not consider mutual-excitation.
Results. Tab. 1 summarizes the experimental results compar-
ing the proposed SLRHP against MEMIP and NAIVE algo-
rithms on four subsets of the MemeTracker dataset. In each
row, the table describes the dataset characteristics, and for
each method it provides the training time, AUC, and accu-
racy with the best parameter settings (for SLRHP, K = 6
and r= 2, except for MT3 for which r= 3). On small to
medium-sized datasets (MT1, MT2, MT3), SLRHP is as ef-
ficient as its main competitor MEMIP, while orders of mag-
nitude faster. On the larger MT4 dataset, SLRHP still runs

in reasonable time while outperforming the NAIVE base-
line. Note that MEMIP could not be computed in reasonable
time for this dataset (less than a few days).

Fig. 2(a) shows in log-log scale the computational time
needed for the inference algorithm on all the MemeTracker
datasets, with respect to nd. This time is indeed linear in nd
for SLRHP, while super-linear for the state-of-the-art com-
petitor of the related literature. In Fig. 2(b) it is indicated
that the accuracy measurements are relatively stable with re-
gards to the rank of the approximation r, with a maximum
for r= 3. Finally, Fig. 2(c) shows the 2D embedding learned
by SLRHP for the MT3 dataset with r= 2. In the embedding
space, the websites seem to align along the axes of the em-
bedding space, with varying amplitudes. This may indicate
that the algorithm recovered two different groups, each one
representing similar activities, although with a large vari-
ability in the activity of the websites inside each group.

Conclusion
This work focused on modeling multivariate time series
where a very large number of event types can occur, and a
very large number of historical observations are available for
training. The introduced framework is called Scalable Low-
Rank Hawkes Processes (SLRHP), for which we developed
a novel inference algorithm for parameter estimation. The-
oretical complexity analysis as well as experimental results
show that our approach is highly scalable, while also still
competitive with regards to predictive performance as com-
pared to state-of-the-art inference algorithms.
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[6] Aurélien Alfonsi and Pierre Blanc. Dynamic optimal execu-
tion in a mixed-market-impact hawkes price model. Finance
and Stochastics, 20(1):183–218, 2015.

[7] Riley Crane and Didier Sornette. Robust dynamic classes re-
vealed by measuring the response function of a social sys-
tem. Proceedings of the National Academy of Sciences,
105(41):15649–15653, 2008.
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