
Chapter 1

Mining Clinical Data

Argyris Kalogeratos, V. Chasanis, G. Rakocevic, A. Likas,

Z. Babovic, and M. Novakovic

1.1 Data Mining Methodology

The prerequisite of any machine learning or data mining application is to have a

clear target variable that the system will try to learn [27]. In a supervised setting, we

also need to know the value of this target variable for a set of training examples

(i.e., patient records). In the case study presented in this chapter, the value of the

considered target variable that can be used for training is the ground truth character-

izations of the coronary artery disease severity or, as a different scenario, the

progression of the patients. We either set as target variable the disease severity,

or disease progression, and then we consider a two-class problem in which we aim

to discriminate a group of patients that are characterized as “severely diseased”

or “severely progressed,” from a second group containing “mildly diseased” or

“mildly progressed” patients, respectively. This latter mild/severe characterization

is the actual value of the target variable for each patient.

In many cases, neither the target variable nor its ground truth characterization is

strictly specified by medical experts, which is a fact that introduces high complexity
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and difficulty to the data mining process. The general data mining methodology we

applied is a procedure divided into six stages:

Stage 1: Data mining problem specification

• Specify the objective of the analysis (the target variable).

• Define the ground truth for each training patient example (the specific value

of the target variable for each patient).

Stage 2: Data preparation, where some preprocessing of the raw data takes place

• Deal with data inconsistencies, different feature types (numeric and nominal),

and missing values.

Stage 4: Data subset selection

• Selection of a feature subset and/or a subgroup of patient records

Stage 5: Training of classifiers

• Build proper classifiers using the selected data subset.

Stage 6: Validate the resulting models

• Using techniques such as v-fold cross-validation.

• Compare the performance of different classifiers.

• Evaluate the overall quality of the results.

• Understand whether the specification of the data mining problem and/or the

definition of the ground truth values are appropriate in terms of what can be

extracted as knowledge from the available data.

A popular methodology to solve these classification problems is to use a decision

tree (DT) [28]. DTs are popular tools for classification that are relatively fast to both

train and make predictions, while they also have several other additional

advantages [10]. First, they naturally handle missing data; when a decision is

made on a missing value, both subbranches are traversed and a prediction is

made using a weighted vote. Second, they naturally handle nominal attributes.

For instance, a number of splits can be made equal to the number of the different

nominal values. Alternatively, a binary split can be made by grouping the nominal

values into subsets. Most important of all, a DT is an interpretable model that

represents a set of rules. This is a very desirable property when applying classifica-

tion models to medical problems since medical experts can assess the quality of the

rules that the DTs provide.

There are several algorithms to train DT models, among the most popular of

them are ID3 and its extension C4.5 [2]. The main idea of these algorithms is to start

building a tree from its root, and at each tree node, a split of the data in two subsets

is determined using the attribute that will result in the minimum entropy (maximum

information gain).

DTs are mainly used herein because they are interpretable models and have

achieved good classification accuracy in many of the considered problems.
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However, other state-of-the-art methods such as the support vector machine (SVM)

[3] may provide better accuracy at the cost of not being interpretable. Another

powerful algorithm that builds non-interpretable models is the random forest

(RF) [18]. An RF consists of a set of random DTs, each of them trained using a

small random subset of features. The final decision for a data instance is taken using

strategies such as weighted voting on the prediction of the individual random DTs.

This also implied that a decision can be made using voting on contradicting rules

and explains why these models are not interpretable. In order to assess the quality of

the DT models that we build, we compare the classification performance of DTs to

other non-interpretable classifiers such as the abovementioned SVM and RF.

Another property of DTs is that they automatically provide a measure of the

significance of the features since the most significant features are used near the root

of the DT. However, other feature selection methods can also be used to identify

which features are significant for the classification tasks that we study [7]. Most

feature selection methods search over subsets of the available features to find the

subset that maximizes some criterion [4]. Common criteria measure the correlation

between features and the target category, such as the information gain (IG) or

chi-squared measures. Among the state-of-the-art feature selection techniques are

the RFE-SVM [6], mRMR [22], and MDR [13] techniques. They differ to the

previous approaches in that they do not use single-feature evaluation criteria.

Instead, they try to eliminate redundant features that do not contain much informa-

tion. In this way, a feature that is highly correlated with other features is more

probable to be eliminated than a feature that may have less IG (as single-feature

evaluation measure) comparing to the IG of the first but at the same time carries

information that is not highly correlated with other features [11].

1.2 Data Mining Algorithms

In this section we briefly describe the various algorithms used in our study for

classifier construction and feature evaluation/selection, as well as the measures we

used to assess the generalization performance of the obtained models.

1.2.1 Classification Methods

1.2.1.1 Decision Trees

A decision tree (DT) is a decision support tool that uses a treelike graph represen-

tation to illustrate the sequence of decisions made in order to assign an input

instance to one of the classes. The internal node of a decision tree corresponds to

an attribute test. The branches between the nodes tell us the possible values that

these attributes can have in the observed samples, while the terminal (leaf ) nodes

provide the final value (classification label) of the dependent variable.
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A popular solution is the J48 algorithm for building DTs that has been

implemented in the very popular Weka software for DM [2]. It is actually an

implementation of the well-known and widely studied C4.5 algorithm for building

decision trees [15]. The tree is built in a top-down fashion, and at each step, the

algorithm splits a leaf node by identifying the attribute that best discriminates

the subset of instances that correspond to that node. A typical criterion that is

commonly used to quantify the splitting quality is the information gain. If a node of

high-class purity is encountered, then this node is considered as a terminal node and

is assigned the label of the major class. Several post-processing pruning operations

also take place using a validation in order obtain relatively short trees that are

expected to have better generalization.

It is obvious that the great advantage of DTs as classification models is their

interpretability, i.e., their ability to provide the sequence of decisions made in order

to get the final classification result. Another related advantage is that the learned

knowledge is stored in a comprehensible way, since each decision tree can be easily

transformed to a set of rules. Those advantages make the decision trees very strong

choices for data mining problems especially in the medical domain, where inter-

pretability is a critical issue.

1.2.1.2 Random Forests

A random forest (RF) is an ensemble of decision trees (DTs), i.e., it combines the

prediction made by multiple DTs, each one generated using a different randomly

selected subset of the attributes [18]. The output combination can be done using

either simple voting or weighted voting. The RF approach is considered to provide

superior results to a single DT and is considered as a very effective classification

method competitive to support vector machines. However, its disadvantage com-

pared to DTs is that model interpretability is lost since a decision could be made

using voting on contradicting rules.

1.2.1.3 Support Vector Machines

The support vector machine classifier (SVM) [6, 16] is a supervised learning

technique applicable to both classification and regression. It provides state-of-the-

art performance and scales well even with large dimension of the feature vector.

More specifically, suppose we are given a training set of l vector with d dimensions,

xi ∈ Rd, i ¼ 1, . . ., n, and a vector y ∈ Rl with yi ∈ {1, � 1} denoting the class

of vector xi. The classical SVM classifier finds an optimal hyperplane which

separates data points of two classes in such way that the margin of separation

between the two classes is maximized. The margin is the minimal distance from the

separating hyperplane to the closest data points of the two classes. Any hyperplane

can be written as the set of points x satisfying wTx + b ¼ 0. The vector w is a

normal vector and is perpendicular to the hyperplane. A mapping function φ(x) is
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assumed that maps each training vector to a higher dimensional space, and the

corresponding kernel function defined as the inner product K(x,y) ¼ φT(x) � φ(y).
Then the SVM classifier is obtained by solving the following primal optimiza-

tion problem:

min
w, b, ξ

1

2
wTwþ Ci

Xl
i¼1

ξi (1.1)

ð1:2Þ

where ξi is called slack variable and measures the extent to which the example xi
violates the margin condition and C a tuning parameter which controls the balance

between training error and the margin. The decision function is thus given from the

following equation:

sqn
Xl
i¼1

wiK xi; xð Þ þ b

 !
, whereK xi; xj

� � ¼ ϕT xið Þϕ xj
� �

(1.3)

A notable characteristic of SVMs is that, after training, usually most of the

training instances xi have wi ¼ 0 in the above equation [17]. In other words, they do

not contribute to the decision function. Those xi for which wi ¼ 0 are retained in the

SVM model and called support vectors (SVs). In our approach we tested the linear

SVM (i.e., with linear kernel function K(xi,xj) ¼ xi
T � xj) and the SVM with RBF

kernel function with no significant performance difference. For this reason we have

adopted the linear SVM approach. The optimal value of the parameter C for each

classification problem was determined through cross-validation.

1.2.1.4 Naı̈ve Bayes Classifier

The naı̈ve Bayes (NB) [19] is a probabilistic classifier that builds a model p(x|Ck)

for the probability density of each class Ck. These models are used to classify a new

instance x as follows: First the posterior probability P(Ck|x) is computed for each

class Ck using the Bayes theorem:

P Ckjxð Þ ¼ P xjCkð ÞP Ckð Þ
P xð Þ (1.4)

where P(x) and P(Ck) represent the a priori probabilities. Then the input x is

assigned to the class with maximum P(Ck|x).

In the NB approach, we made the assumption that the attributes xi of x are

independent to each other. Thus, P(x|Ck) can be computed as the product of the
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one-dimensional densities p(xi|Ck). The assumption of variable independence dras-

tically simplifies model generation since the probabilities p(xi|Ck) can be easily

estimated, especially in the case of the discrete attributes where they can be

computed using histograms (frequencies). The NB approach has been proved

successful in the analysis of the genetic data.

1.2.1.5 Bayesian Neural Networks

A new methodology has been recently proposed for training feed-forward neural

networks and more specifically the multilayer perceptron (MLP) [29]. This Bayes-

ian methodology provides a viable solution to the well-studied problem of

estimating the number of hidden units in MLPs. The method is based on treating

the MLP as a linear model, whose basis functions are the hidden units. Then, a

sparse Bayesian prior is imposed on the weights of the linear model that enforces

irrelevant basis functions (equivalently unnecessary hidden units) to be pruned

from the model. In order to train the model, an incremental training algorithm is

used which, in each iteration, attempts to add a hidden unit to the network and to

adjust its parameters assuming a sparse Bayesian learning framework. The method

has been tested on several classification problems with performance comparable to

SVMs. However, its execution time was much higher compared to SVM.

1.2.1.6 Logistic Regression

Logistic regression (LR) is the most popular traditional method used for statistical

modeling [20] of binary response variables, which is the case in most problems of

our study. LR has been used extensively in the medical and social sciences. It is

actually a linear model in which the logistic function is included in the linear model

output to constraint its value in the range from zero to one. In this way, the output

can be interpreted as the probability of the input belonging to one of the two classes.

Since the underlying model is linear, it is easy to train using various techniques.

1.2.2 Generalization Measures

In order to validate the performance of the classification models and evaluate their

generalization ability, a number of typical cross-validation techniques and two

performance evaluation measures were used. In this section we will cover two of

them: classification accuracy and the kappa statistic.

In k-fold cross-validation [1], we partition the available data into k-folds.

Then, iteratively, each of these folds is used as a test set, while the remaining
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folds are used to train a classification model, which is evaluated on the test set.

The average classifier performance on all test sets provides a unique measure of

the classifier’s performance on the discrimination problem. Leave-one-out

validation technique is a special case of cross validation, where the test set contains

only a single data instance each time that is left out of the training set, i.e., leave-

one-out is actual N-fold cross validation where N is the number of data objects.

The accuracy performance evaluation measure is very simple and provides the

percentage of correctly classified instances. It must be emphasized that its absolute

value is not important in the case of unbalanced problems, i.e., an accuracy of 90 %

may not be considered important when the percentage of data instances belonging

to the major class is 90 %. For this reason we always report the accuracy gain as

well, which is the difference between the accuracy of the classifier and the percent-

age of the major class instances.

The kappa statistic is another reported evaluation measure calculated as

Kappa ¼ P Að Þ � P Eð Þ
1� P Eð Þ (1.5)

where P(A) is the percentage of observed agreement between the predictions and

actual values and P(E) the percentage of chance agreement between the predictions

and actual values. A typical interpretation of the values of the kappa statistic is

provided in Table 1.1.

1.2.2.1 Feature Selection and Ranking

A wide variety of feature (or attribute) selection methods have been proposed to

identify which features are significant for a classification task [4]. Identification of

significant feature subsets is important for two main reasons. First, the complexity

of solving the classification problem is reduced, and data quality is improved by

ignoring the irrelevant features. Second, in several domains such as medical

domain, the identification of discriminative features is actually new knowledge

for the problem domain (e.g., discovery of new gene markers using bioinformatics

datasets or SNPs in our study using the genetic dataset).

Table 1.1 Interpretation of the kappa statistic value

Kappa

value <0 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.81–1

Interpretation No

agreement

Slight

agreement

Fair

agreement

Moderate

agreement

Substantial

agreement

Almost

perfect

agreement
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1.2.2.2 Single-Feature Evaluation

Simple feature selection methods rank the features using various criteria that

measure the discriminative power of each feature when used alone. Typical criteria

compute the correlation between the feature and the target category, such as the

information gain and chi-squared measure, which we have used in our study.

Information Gain

Information gain (IG) of a feature X with respect to class Y(I(Y;X)) is the reduction

in uncertainty about the value of Y when the value of X is known. The uncertainty

of a variable X is measured by its entropy H(X), and the uncertainty about the

value of Y, when the value of X is known, is given by its conditional entropy

H(Y|X). Thus, information gain I(Y;X) can be defined as

I Y;Xð Þ ¼ H Yð Þ � H Y Xj Þð (1.6)

For discrete features, the entropies are calculated as

H Yð Þ ¼ �
Xl
j¼1

P Y ¼ yj

� �
log2 P Y ¼ yj

� �� �
(1.7)

H YjXð Þ ¼ �
Xl
j¼1

P X ¼ xj
� �

H Y X ¼ xj
�� ��

(1.8)

Alternatively, IG can be calculated as

I Y;Xð Þ ¼ H Xð Þ þ H Yð Þ � H Y;Xð Þ (1.9)

For continuous features, discretization is necessary.

Chi-Square

The chi-square (also denoted as chi-squared or χ2) is another popular criterion for

feature selection. Features are individually evaluated by measuring their

chi-squared statistic with respect to the classes [21].

1.2.2.3 Feature Subset Selection

The techniques described below are more powerful but computationally expensive.

They differ from previous approaches in that they do not use single-feature

evaluation criteria and result in the selection of feature subsets. They aim to
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eliminate features that are highly correlated to other already-selected features.

The following methods have been used:

Recursive Feature Elimination SVM (RFE-SVM)

Recursive feature elimination SVM (RFE-SVM) [6] is a method that recursively

trains an SVM classifier in order to determine which features are the most redundant,

non-informative, or noisy for a discrimination problem. Based on the ranking

produced at each step, the method eliminates the feature of the lower ranking

(or more than one feature). More specifically, the trained SVM uses the linear

kernel, and its decision function for a data vector xi of class yi ¼ {�1 or + 1} is

D xð Þ ¼ w � x1 þ b, (1.10)

where b the bias and w the weight vector computed as a linear combination of the

N data vectors:

w ¼
XN
i¼1

aiyixi, (1.11)

b ¼ 1

N

XN
i¼1

yi � w � xið Þ: (1.12)

Most of ai weights are zero, while the weights that correspond to the marginal

support vectors (SVs) are greater than zero and sum to the cost parameter C. These

parameters are the output of the trained SVM of a step, and then the algorithm

computes the w feature weight vector that describes how useful each feature is

based on the derived SVs. The ranking criterion used by the RFE-SVM is the wi
2,

and the feature that is eliminated is given by r ¼ argmin(wi
2).

Minimum Redundancy, Maximum Relevance (mRMR)

Minimum redundancy, maximum relevance (mRMR) [22] is an efficient incremen-

tal feature subset selection method that adds features to the subset based on the

trade-off between feature relevance (discriminative power) and feature redundancy

(correlation with the already-selected features).

Feature redundancy is computed through minimizing the mutual information

(information gain of one feature with respect to the others) of the selected features:

WI ¼ 1

Sj j2
X
i, j∈S

I i; jð Þ, (1.13)

where S is the subset of the selected features. Relevance is computed as the total

information gain of all features in S:
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VI ¼ 1

Sj j
X
i∈S

I h; ið Þ, (1.14)

Optimization with respect to both criteria requires to combine them into a single

criterion function: max(Vl�Wl) or max(Vl/Wl).

K-Way Interaction Information/Interaction Graphs

K-way interaction information (KWII) [30] is a multivariate measure of information

gain, taking into the account the information that cannot be obtained without observ-

ing all k features at the same time [25]. Feature interaction can be visualized by

use of interaction graphs [31]. In such a graph, individual attributes are represented

as graph nodes and a selection of the 3-way interactions as edges (Fig. 1.1).

Multifactor Dimensionality Reduction (MDR)

Multifactor dimensionality reduction (MDR) [13] is an approach for detecting and

characterizing combinations of attributes that interact to influence a class variable.

Features are pooled together into groups taking a certain value of the class label

(original target of MDR were genetic datasets, thus most commonly, multilocus

genotypes are pulled together into low-risk and high-risk groups). This process is

referred to as constructive induction. For low orders of interactions and numbers of

attributes, an exhaustive search is possible to be conducted. However, for higher

numbers, exhaustive search becomes intractable, and other approaches are neces-

sary (preselecting the attributes, random searches, etc.). The MDR approach has

been used for SNP selection in the genetic dataset (Fig. 1.2).

AMBIENCE Algorithm

AMBIENCE [12] is an information theoretic search method for selecting

combinations of interacting attributes based around KWII. Rather than calculating

Fig. 1.1 Example of feature interaction graphs. Features (in this example SNPs) are represented

as graph nodes and a selection of the three-way interactions as edges. Numbers in nodes represent

individual information gains, and the numbers on edges represent the two-way interaction infor-

mation between the connected attributes, all with respect to the class attribute
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KWII in each step (a procedure which requires the computations of super-sets, thus

growing exponentially), AMBIENCE employs the total correlation information

(TCI) defined as

TCI X1,X2, � � �Xkð Þ ¼
Xk
i¼1

H Xið Þ � H X1X2� � �Xkð Þ (1.15)

where H denotes the entropy.

A metric called phenotype-associated information (PAI) is constructed as

PAI X1;X2; . . . ;Xk; Yð Þ ¼ TCI X1;X2; . . . ;Xk; Yð Þ � TCI X1;X2; . . . ;Xkð Þ (1.16)

The algorithm starts from n subsets of attributes, each containing one of the n

attributes with the highest individual information gain with respect to the class

label. In each step, n new subsets containing combinations with highest PAI are

greedily selected, from all of the combinations created by adding each attribute to

each subset from the previous step. The procedure is repeated t times. After

t iterations KWII is calculated for the resulting n subsets. The AMBIENCE

algorithm has been successfully employed in the analysis of the genetic dataset.

1.2.3 Treating Missing Values and Nominal Features

Missing values problem is a major preprocessing issue in all kinds of data mining

applications. The primary reason is that not all classification algorithms are able to

handle data with missing values. Another reason is that when a feature has values

that are missing for some patients, then the algorithm may under-/overestimate its

Fig. 1.2 MDR example. Combinations of attribute values are divided into “buckets.” Each bucket

is marked as low or high risk, according to a majority vote
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importance for the discrimination problem. A second preprocessing issue of less

importance is the existence of nominal features in the dataset, e.g., features that take

string values or date features. There are several methods that require numeric data

vectors without missing values (e.g., SVM).

The nominal features can easily be converted to numerical, for example, by

assigning a different integer value to each distinct nominal value of the feature.

Dates are often converted to some kind of time difference (i.e., hours, days, or

years) with respect to a second reference date. One should be cautious and

renormalize the data vectors, since the differences in the order of magnitude of

feature values affect the training procedure (features taking larger values will play

crucial role to the model training).

On the other hand, missing values is a complicated problem, and often there is

not much space for sophisticated things to do. Among the simple and straightfor-

ward approaches to treat missing values are:

• The complete elimination of features that have missing values. Obviously, if a

feature is important for a classification problem, this may be not acceptable.

• The replacement with specific computed or default values

– Such values may be the average or median value of the existing numeric

values and, for a nominal feature, the nominal value with higher frequency.

This latter can also be used when the numeric values are discrete and

generally small in number. In some cases it is convenient to put zero values

in the place of missing values, but this can also be catastrophic in other cases.

– Another approach is to use the K-nearest neighborhood for the data objects

that have missing values and then try to fill them with values that are more

frequent in the neighborhood objects. If an object is similar to another, based

on all the data features, then it is highly probable that the missing value would

be similar to the respective value of its neighbor.

– In some cases, it is possible to take advantage of the special properties of a

feature and its correlation to other features in order to figure out good

estimations for the missing values. We describe such a special procedure in

the case study at end of the chapter.

• The conversion of a nominal feature to a single binary when the existing values

are quite rare in terms of frequency and have similar meaning. In this way, the

binary feature takes a “false” value only in the cases where the initial feature had

a missing value.

• The conversion of a nominal feature to multiple binary features. This approach

is called feature extension, or binarization, or 1-out-of-k encoding (for k

nominal values). More specifically, a binary feature is created for each unique

nominal value, and the value of the initial nominal feature for a data object is

indicated by a “true” value at the respective created binary feature. Conversely,

a missing value is encoded with “false” values to all the binary extensions of

the initial feature.
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1.3 Case Study: Coronary Artery Disease

This section presents a case study based on the mining on medical data carried out

as a part of ARTreat project, funded by the European Commission under the

umbrella of the Seventh Framework Program for Research and Technological

Development, in the period 2008–2013 [32]. The project was a large, multinational

collaborative effort to advance the knowledge and technological resources related

to treatment of coronary artery disease. The specific work used as the background

for the following text was carried out in a cooperation of Foundation for Research

and Technology Hellas (Ioannina, Greece), University of Kragujevac (Serbia), and

Consiglio Nazionale delle Ricerche (Pisa, Italy). Moreover, the patient databases

used in our analysis were collected and provided by the Consiglio Nazionale delle

Ricerche.

1.3.1 Coronary Artery Disease

Coronary artery disease (CAD) is the leading cause of death in both men and

women in developed countries. CAD, specifically coronary atherosclerosis

(ATS), occurs in about 5–9 % of people aged 20 and older (depending on sex and

race). The death rate increases with age and overall is higher for men than for

women, particularly between the ages of 35 and 55. After the age of 55, the death

rate for men declines, and the rate for women continues to climb. After age 70–75,

the death rate for women exceeds that for men who are the same age.

Coronary artery stenosis is almost always due to the gradual, lasting even years,

buildup of cholesterol and other fatty materials (called atheromas or atherosclerotic

plaques) in the wall of a coronary artery [24]. As an atheroma grows, it may bulge

into the artery, narrowing the interior of the artery (lumen) and partially blocking

blood flow. As an atheroma blocks more and more of a coronary artery, the supply

of oxygen-rich blood to the heart muscle (myocardium) becomes more inadequate.

An inadequate blood supply to the heart muscle, by any cause, is called myocardial

ischemia. If the heart does not receive enough blood, it can no longer contract and

pump blood normally. An atheroma, even one that is not blocking much the blood

flow, may rupture suddenly. The rupture of an atheroma often triggers the formation

of a blood clot (thrombus) which further narrows, or completely blocks, the artery,

causing acute myocardial ischemia (AMI).

The ATS disease can be medically treated using pharmaceutical drugs, but

this cannot decrease the existing stenoses but rather delay their development.

A different treatment approach applies an interventional therapeutic procedure to

a stenosed coronary artery, such as percutaneous coronary artery angioplasty

(PTCA, balloon angioplasty) and coronary artery bypass graft surgery (CABG).

PTCA is one way to widen a coronary artery. Some patients who undergo PTCA

have restenosis (i.e., renarrowing) of the widened segment within about 6 months
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after the procedure. It is believed that the mechanism of this phenomenon, called

“restenosis,” is not related with the progression of ATS disease but rather with the

body’s immune system response to the injury of the angioplasty. Restenosis that is

caused by neointimal hyperplasia is a slow process, and it was suggested that

the local administration of a drug would be helpful in preventing the phenomenon.

Stent-based local drug delivery provides sustained drug release with the use

of stents that have special features for drug release, such as a polymer coating.

However, cell-culture experiments indicate that even brief contact between

vascular smooth-muscle cells and lipophilic taxane compounds can inhibit the

proliferation of such cells for a long period. Restenosed arteries may have to

undergo another angioplasty. CABG is more invasive than PTCA as a procedure.

Instead of reducing the stenosis of an artery, it bypasses the stenosed artery using

vessel grafts.

Coronary angiography, or coronography, (CANGIO) is an X-ray examination

of the artery of the heart. A very small tube (catheter) is inserted into an artery.

The tip of the tube is positioned either in the heart or at the beginning of the arteries

supplying the heart, and a special fluid (called a contrast medium or dye) is injected.

This fluid is visible by X-ray and hence pictures are obtained. The severity,

or degree, of stenosis is measured in the cardiac cath lab by comparing the area

of narrowing to an adjacent normal segment. The most severe narrowing is deter-

mined based on the percentage reduction and calculated in the projection. Many

experienced cardiologists are able to visually determine the severity of stenosis and

semiquantitatively measure the vessel diameter. However, for greatest accuracy,

digital cath labs have the capability of making these measurements and calculations

with computer processing of a still image. The computer can provide a measure-

ment of the vessel diameter, the minimal luminal diameter at the lesion site, and

the severity of the stenosis as a percentage of the normal vessel. It uses the catheter

as a reference for size.

The left coronary artery, also called left main artery (TC), usually divides into

two branches (Fig. 1.3), known as the left anterior descending (LAD) and the

circumflex (CX) coronary arteries. In some patients, a third branch arises in

between the LAD and the CX known as the ramus intermediate (I). The LAD

travels in the anterior interventricular groove that separates the right and the left

ventricle, in the front of the heart. The diagonal (D) branch comes off the LAD and

runs diagonally across the anterior wall towards its outer or lateral portion. Thus, D

artery supplies blood to the anterolateral portion of the left ventricle. A patient may

have one or several D branches. The LAD gives rise to septal branches (S). The CX

travels in the left atrioventricular groove that separates the left atrium from the left

ventricle. The CX moves away from the LAD and wraps around to the back of the

heart. The major branches that it gives off in the proximal or initial portion are

known as obtuse, or oblique, marginal coronary arteries (MO). As it makes its way

to the posterior portion of the heart, it gives off one or more left posterolateral

(PL) branches. In 85 % of cases, the CX terminates at this point and is known as a

nondominant left coronary artery system.
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The right coronary artery (RC) travels in the right atrioventricular (RAV)

groove, between the right atrium and the right ventricle. The right coronary artery

then gives rise to the acute marginal branch that travels along the anterior portion of

the right ventricle. The RC then continues to travel in the RAV groove. In 85 % of

cases, the RC is a dominant vessel and supplies the posterior descending

(DP) branch that travels in the PIV groove. The RC then supplies one or more

posterolateral (PL) branches. The dominant RC system also supplies a branch to the

right atrioventricular node just as it leaves the right AV groove, and the PD branch

supplies septal perforators to the inferior portion of the septum. In the remaining

15 % of the general population, the CX is “dominant” and supplies the branch that

travels in the posterior interventricular (PIV) groove. Selective coronary angiogra-

phy offers the only means of establishing the seriousness, extent, and site of

coronary sclerosis.

Extensive clinical and statistical studies have identified several factors that

increase the risk of coronary heart disease and heart attack [9]. Note that coronary

heart disease usually implies CAD where the stenoses are caused by atherosclero-

sis; however there can be also causes other than that. Important risk factors are

those that research has shown to significantly increase the risk of heart and blood

vessel (cardiovascular) disease [8]. Other factors are associated with increased risk

Fig. 1.3 The coronary arteries structure of the heart
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of cardiovascular disease, called contributing risk factors, but their significance

and prevalence have not yet been precisely specified. The more risk factors

you have, the greater your chance of developing the disease. However, the disease

may develop without the presence of any classic risk factor. Researchers are

studying other possible factors, including C-reactive protein and omocistein.

On the other way, researchers are moving to identify in risk subgroups of subjects,

a decisive factor for the selection of high-risk patients to be submitted to most

aggressive treatment.

Genetic studies of coronary heart disease and infarction are lagging behind other

cardiovascular disorders. The major reason for the limited success in this field of

genetics is that it is a complex disease which is believed to be caused by many

genetic factors, environmental factors, as well as interactions among these factors.

Indeed, many risk factors have been identified, and, among these factors, family

history is one of the most significant independent risk factor for the disease. Unlike

single-gene disorders, complex genetic disorders arise from the simultaneous

contribution of many genes. Genetic variants or single-nucleotide polymorphisms

(SNPs) are identified in the literature, and many candidate genes with physiologic

relevance to coronary artery disease have been found to be associated with

increased or decreased risks for coronary heart disease [23, 26]. The frequencies

of SNP alleles or genotypes are analyzed and an allele or genotype is associated

with the disease if its occurrence is significantly different from that reported in the

control [14]. The identification of the key complement of genes that contribute to

cardiovascular diseases, in particular CAD, will lead to new types of genetic tests

that can assess an individual’s risk for disease development. Subsequently, the

latter may also lead to more effective treatment strategies for the delay or even

prevention of the disease altogether.

1.3.2 The Main Database (M-DB)

We have considered two databases: the main database (M-DB) concerning 3,000

patients on which most of the data mining work was focused and a second database

with about 676 patient records with detailed scintigraphy results.

M-DB contains detailed information for 3,000 patients who suffer from some

kind of symptoms related to the ATS disease that were presented to them and made

them go to the hospital. For most of the patients, these symptoms correctly indicate

that they have stenosed arteries in a sensible extend, while for not quite a small

number of other patients, their symptoms are a false-positive indication of impor-

tant stenoses in critical arteries for the heart function. Patient’s history describes the

profile of a patient when hospitalized and includes the following:

• Age when hospitalized, sex

• Family history related to the ATS disease
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• History of interventional treatment (bypass or angioplasty operations)

• Acute myocardial infarction (AMI) and history of previous myocardial

infarction (PMI)

• Angina on effort/at rest

• Ischemia on effort/at rest

• Arrhythmias, cardiomyopathy, diabetes, cholesterol, and akinesia

• The presence of risk factors such as obesity and smoking

A series of medical examinations is provided:

• Blood tests

• Functional examinations

• Electrocardiogram (ECG) during exercise stress test

• ECG during rest

• Imaging examinations

• A first coronary angiography (CANGIO) examination

• A second CANGIO examination available only for 430 patients

• Medical treatment after the entrance of patient to the hospital include,

• Pharmaceutical treatment

• Interventional procedures (bypass or PTCA operations)

Follow-up information reports events such as:

• Death events and a diagnosed reason for it

• Events of acute myocardial infarctions

• Interventional treatment procedures (also mentioned in the medical treatment

category)

• Other cardiac events (pacemaker implantation, etc.)

Genetic information that includes the expressions of 57 genes is available only

for 450 patients.

Particularly for the CANGIO examination, the database reports the stenosis level

on the four major coronary arteries TC, LAD, CX, and RC if that level is at least

50 %. For each of the major arteries it is also available, for many but not all cases,

the exact site of the artery where the narrowing is located, namely, proximal,

medial, and distal. A stenosis is more severe when sited at the proximal part of

the artery and less severe at distal, since the blood flow at the early part of the artery

affects the flow in larger part of the heart (Fig. 1.3). Moreover, the CANGIO also

provides the degree of stenosis for a number of secondary arteries, such as D, I, and

MO. Table 1.2 presents some examples of CANGIO examinations, the extent

of stenosis for the major and secondary vessels (luminal diameter reduction).

The Max columns indicate the maximum stenosis in the length of the respective

artery. For some cases the medical expert was not in position to specify the site of

a stenosis, whereas he identified the extent of the functional problem, i.e., the

percentage of the stenosis.
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1.3.3 The Database with Scintigraphies (S-DB)

The scintigraphic dataset (S-DB) is a dataset containing records for about

440 patients with laboratory tests, 12-lead electrocardiography (ECG), stress/rest

gated SPECT, clinical evaluation, and the results of CANGIO. More specifically:

• Clinical Examinations

The available clinical variables include patient age, sex, and history of angina

(at rest, on effort, or mixed), previous MI, and cardiovascular risk factors: family

history of premature IHD, presence of diabetes mellitus, arterial hypertension,

hypercholesterolemia, hypertriglyceridemia, obesity, and being a current or

former smoker.

• Laboratory Examinations

The laboratory data available include erythrocyte sedimentation rate, fasting

glucose, serum creatinine, total cholesterol, HDL and LDL levels, triglycerides,

lipoprotein, thyrotropin, free triiodothyronine, free thyroxine, C-reactive protein,

and fibrinogen.

• Electrocardiographic Data

The ECG data include 12-lead ECG results (normal/abnormal), exercise stress

test results, and maximal workload on effort.

• Echocardiographic Data

Two-dimensional echocardiographic data include left ventricular ejection frac-

tion (LVEF), left ventricular end-diastolic diameter, wall motion score index,

and end-diastolic thickness of the interventricular septum and posterior wall.

• Scintigraphic Data

The detailed scintigraphic data available include the values of SRS, SSS, SDS,

EDV on effort, ESV on effort, SMS on effort, and STS on effort.

The objectives of the analysis are the same as with the main database, i.e., to

build classification models predicting the severity of ATS using the other features

and mainly the scintigraphic information.

1.3.4 Defining Disease Severity

As mentioned before, the target variable needed for the present learning problem is

the “correct” ground truth class, namely, severe or mild-normal, of each patient

instance and this must be set in advance of any supervised model training. Next, the

classification algorithms try to learn how to discriminate the patients of each

category. Generally, the characteristics of the real-world problem under investiga-

tion and the quality/quantity of the provided examples affect directly the level of

difficulty of the learning problem.

Apart from any data quality issues, the real problem of predicting the severity of

a patient’s ATS condition presents additional difficulties regarding the very
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fundamental definition of the disease severity categories for the known training

dataset. To define the target variable of the classification problems, we used the

information of the CANGIO examinations which can express the atherosclerotic

burden of a patient at the time being examined. The CANGIO indicates which

arteries are stenosed, when the narrowing percentage is at least 50 %, and the

stenosis is characterized by that percentage. In particular, five different percentage

values are reported in the database: 0 %, 50 %, 75 %, 90 %, and 100 %.

The first issue that arises is that we need to define a way to utilize all these

measurements to a single indication about disease severity. The second issue is that

these indications about stenotic vessels are provided by the doctor that did the

CANGIO, and the diagnosis may depend on the personal opinion of the expert (may

vary for different doctors) and the technology of the hardware and the procedures

used for the examination (e.g., the CANGIO back in 1970 cannot be as good as a

modern diagnosis). In the following paragraphs of this section, we describe the

different severity definitions we considered and how a two-class classification

problem was set up.

1.3.4.1 The Number of Diseased Vessels

The number of the diseased major vessels (TC, LAD, CX, RC) and the extent of

stenosis on each of them can be used to quantify the ATS disease severity. Thus,

patients can be categorized by the following simple rule:

• Severely diseased having > ¼ A diseased vessels with > ¼ T stenosis

• Mild, otherwise

The values of the two parameters vary:

• A ¼ 1; 2; 3f g
• T ¼ 50%, 75%, 100%f g

This disease severity definition is denoted as DefA.

1.3.4.2 Angiographic Score17

The more detailed special angiographic score proposed in [5] can be utilized

for quantifying the severity of the disease. This score, herein denoted as Score17,

assigns a severity level to a patient in the range of [0,. . .,17] with 17 being the most

severe condition, while zero correspond to a normal patient. More specifically, this

metric examines all the sites of the 4 major coronary arteries (e.g., the proximal,

medial, and distal site of LAD) for lesions exceeding a predefined stenosis

threshold. The exact computation of Score17 is presented in Fig. 1.4.
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Based on this score, four medically meaningful categories are defined:

a. Score17 ¼ 0: Normal vessels

b. Score17 less or equal to 7: Mild ATS condition

c. Score17 between 7 and 10: Moderate ATS condition

d. Score17 between 10 and 17: Severe ATS condition

These can be used to directly set up a four-class problem denoted as S-vs-M-vs-

M-vs-N. Furthermore, we defined a series of cases by grouping together the above

subgroups, e.g., SM-vs-MN is the problem where the “Severe” class contains

patients with severe ATS (case (a)) or moderate ATS severity (case (b)), while

the mild and normal ATS diseased patients (cases (c) and (d)) constitute the “Mild”

class. This definition is denoted as DefB.

1.3.4.3 HybridScore: A Hybrid Angiographic Score

Undoubtedly, Score17 gives more freedom to the specification of the target value of

the problem. However, the need to define the threshold leads again in a large set of

problem variants. To tackle this situation, we have developed an extension of this

score that does not depend on a stenosis threshold. The basic idea is the use of a set

of weights, each of them corresponding to different ranges of stenosis degree. These

weights are incorporated to the score computation in order to add fuzziness to

patient characterization. An example would explain the behavior of the modified

Score17 denoted as HybridScore (Table 1.3).

Examples:

a. Supposing that a patient has 50 % stenosis at TC, 50% at RC proximal, 90 % at RC

distal, and the rest ofhis vessels are normal, then the classic Score17,with a threshold

at 75 % stenosis, assigns a disease severity level 3 for the DX distal stenosis.

if stenosis is found in TC then 
Score17 = 12 points  
Ignore stenosis in LAD and CX

if there is a stenosis in RC then
Score17 = Score17 + the most severe case from RC 

(5 for proximal and medial, or 3 for distal)
end

else 
Score17 = the most severe stenosis from LAD 

(7 points for proximal, 5 medial, or 3 for distal)
Score17  = Score17  + the most severe stenosis from CX 

(5 for proximal and medial, or 3 for distal)
Score17  = Score17  + the most severe stenosis from RC 

(5 for proximal and medial, or 3 for distal)
end

Fig. 1.4 The algorithm to compute Score17
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The developed HybridScore17 assigns 12*1/2(for TC) + max{5*1/2, 3*1} ¼ 9.

Note that for multiple stenoses at the same vessel, this score takes into account

the most serious with respect to the combined weighted severity.

b. Let us examine another patient with exactly the same TC and RC findings, but

having as well 90 % stenosis at LAD proximal and 90 % at CX medial. The

traditional Score17 ignores these latter two, because they belong to the left coronary

tree where TC is the most important part and exceeds the elementary threshold of

50 % stenosis (over which a vessel is generally considered as occluded). On the

other hand, HybridScore17 would assign a severity value by computing the max

{9(the previous result), 7 * 1(for LAD proximal) + 5 * 1(for CX medial)} ¼ 12.

Table 1.4 provides the values for the different CANGIO scores. For the Score17

the table provides the values with different stenosis thresholds: 50 % (T50), 75 %

(T75), and 90 % (T90). Note also that the site of the stenosis might not reported by

the medical expert during the examination. In these cases we assume that the

stenosis is located at the proximal site (the most serious scenario). It is worth

mentioning that the threshold of Score17 plays a crucial role in evaluating the

ATS burden of a patient. In the eleventh line of Table 1.4, we observe that using a

threshold of 50 % stenosis, the score gives a value equal to 17 and with 75 %

threshold the score is 12, while for 90 % threshold this value becomes 7. On the

other hand, HybridScore is a single measurement with a value equal to 12.

To illustrate the way the presented scores work, we provide the following graph

that presents the cumulative density function (cdf) for the range of values 0–17, for

the original Score17 using three different thresholds and the HybridScore. The

scores have been computed for the 3,000 patient records of M-DB dataset.

The value at ATS score ¼ 0 corresponds to the number of patients that have a

score value in [0,1], for ATS score ¼ 1 a computed score in [0,1] or in [1,2], and so

on. For example, looking at the Score17-T90 line, over 40 % of the 3,000 patients

database are assigned with a score value equal to 0 and very few patients exist with

score values larger than zero and less than or equal to 3. Apparently, there is a large

group of patients (about 20 % of the total patients) that have a score over 3 and at

most 4 (Figs. 1.5 and 1.6).

Next, we present the respective figures, Figs. 1.7 and 1.8, for the M-DB after

excluding a subset of patients with a recorded history of PMI or AMI. These

patients are generally cases of more serious ATS burden. This is depicted by the

increased frequencies of the lower ATS scores in the cdf of Fig. 1.7 compared with

the cdf in Fig. 1.5 of the full database of 3,000 patients.

To define a classification problem based on this angiographic score, a proper

threshold needs to be specified. A value of HybridScore over that threshold would

imply that a patient is severely diseased, and is mildly diseased, or even in normal

condition, if his score is below threshold. This definition of ATS disease severity is

denoted as DefC.

Table 1.3 The weights used

by the HybridScore
Stenosis range <50 % 50–75 % 75–90 % 90–100 %

Weight value 0 1/2 2/3 1
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Fig. 1.5 The cumulative density functions of the Score17 and HybridScore for M-DB

Fig. 1.6 The histogram of the different HybridScore values for M-DB patients (x-axis)
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Fig. 1.7 The cumulative density functions of the Score17 and HybridScore for M-DB, excluding

the patients with PMI/AMI history

Fig. 1.8 The histogram of the different HybridScore values for M-DB, excluding the patients with

PMI/AMI history (x-axis)
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1.3.4.4 Discussion on Angiographic Scores

The introduction of the HybridScore proposed in this study has been proved very

beneficial since it allows the complete characterization of the CANGIO examina-

tion using a single numeric value, while the existing characterization is using two

numeric values (namely, Score17 and a stenosis threshold to compute the score).

In this way it is straightforward to define the various classification problems

that emerge by setting a threshold value (th) to this HybridScore (Mild class, hybrid

score < th and Severe class, hybrid score > ¼ th). As the threshold value (th)

increases from 0 to 17, we obtain a sequence of meaningful classification problems.

The proposed HybridScore definition allows for the direct computation of the

difference between two coronary examinations. To our knowledge, this is the first

time such a difference is quantified in literature with a convenient measure which is

also applicable for the quantification of ATS progression.

1.3.5 Results for Data Mining Tasks

This section will illustrate some of the results obtained during the analyses of the

data in the described tasks. It should be noted that the presented results are provided

as examples of the results that can be achieved by mining clinical data, and not as a

facts that should be considered, or accepted, as having medical validity.

1.3.5.1 Correlating Patients’ Profile and ATS Burden

Data Preprocessing

In this task we used the information about the patients’ history and the first

CANGIO examination. Initially, each patient record contains 70 features, some of

them having missing values. For the nominal features that have missing values, we

apply some of the feature transformations presented earlier in the chapter.

• Binarize a Feature by Merging Rare Feature Values

For nominal features that take several values each of them having a very low

frequency while at the same time having many missing values, we merge all

existing different values to a “true” value, and the “false” value was assigned to

themissing value cases. To be this transformation appropriate, the values thatwould

bemerged should express similar findings for the patient, i.e., all the values grouped

into “true” should have similar medical meaning, all negative or all positive. An

example is the feature describing the diagnosis for akinesia that takes values such as

API (1.70 %), SET (0.97 %), INF (6.70 %), POS (0.23 %), LAT (0.13 %), ANT

(0.03 %), and combinations of these values (14.96 %), while the rest 75.30 % are

missing values. Apparently, all the reported values have the same negative medical

meaning about negative findings diagnosed to the patients. In this case, the new
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binary feature has 75.30 % the “true” value and 24.70 % the “false” value. Other

similar cases are dyskinesia, hypokinesia, and AMI complications.

• Feature Extension for Nominal Features with Missing Values

Only one of the new binary features can be “true,” while a missing value is

encoded as an instance where all these new features are “false.” This transfor-

mation is used for features such as AMISTEMI and PMISTEMI.

Missing values are present for numeric features as well. To deal with these cases,

we apply the following transformations:

• Firstly, we eliminated all such features that have a frequency of missing values

over 11 %. These features were hdl (missing, 25.53 %), ldl (missing, 27.73 %),

rpp (missing, 57.83 %), watt (missing, 57.87 %), septup (missing, 16.97 %), and

posteriorwall (missing, 17.90 %).

• For the features that have less that 11 % missing values percentage, we filled

them with the average feature value. This category of features includes hr

(missing, 7.23 %), pressmin (missing, 1.20 %), pressmax (missing, 1.20 %),

creatinine (missing, 9.70 %), cholesterol (missing, 6.60 %), triglic (missing,

8.63 %), and glicemia (missing, 10.53 %).

Special cases of features with missing values are the ejection fraction of the left

ventricular of the heart (EF) and the diagnosis of a dysfunction of that ventricular

(ECHO left ventricular dysfunction). These two findings are commonly measured

by an electrocardiogram and are closely correlated since, usually, a dysfunction of

the ventricle results in a low ejection fraction. The more serious a problem is

diagnosed to the ventricle, the less fraction of the blood in the ventricle in

end-diastole state is pumped out of the ventricle. In the M-DB, there are patient

records where (a) both measurements are provided and (b) only one of the

measurements is reported. We developed the heuristic procedure of Fig. 1.9.

The final step of the above procedure applies feature expansion to the dysfunction

of the ventricular. This is done in order to prepare the data for classification

algorithms such as SVM, where the different nominal values cannot be handled.

After the preprocessing we described, each patient record of the M-DB contains

92 features. This is the full set feature that we finally used.

(1) Compute the average and standard deviation for the EF values of each ventricular dys-
function category (Normal, Regional, Global).

(2) Fill the missing EF values for patients without a dysfunction (Normal) cases with the av-
erage EF value measured for the Normal patients. The same for the other dysfunctions
(Regional and Global).

(3) Using the probability p(type of dysfunction | EF), computed assuming a Gaussian distri- 
bution to model the values of each dysfunction type, fill the missing dysfunction charac-
terization based on the available EF value.

(4) Apply feature extension to Echo left ventricular dysfunction.

Fig. 1.9 The procedure of filling EF and ECHO left ventricular dysfunction missing values
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The AMI date was converted to an integer feature expressing the positive time

difference in days between that date and the hospitalization date of the patient,

similarly for the PMI date. The missing values of these features are filled with zeros.

The results regarding the feature evaluation did not indicate that the elimination

of certain features could lead to better predictions. In fact, there are some features

that do not have much information associated with the value of the target variable

that is predicted (the class of each patient) and are ranked in low positions, but, at the

same time, when eliminated the performance of the models does not improve at all.

Thus, we did not aim further on feature selection by means of computational feature

evaluation. Instead, we considered a second version of each database for these two

tasks where we discarded a number of features that are known to be medically high

correlated with the ATS disease. This approach would force the training algorithms

to use the remaining features and may reveal nontrivial connections between patient

characteristics and the disease. The exact features discarded are ischemia at rest,

AMI, AMI date, AMI STEMI (all the binary expansions), AMI NSTEMI, AMI

complications, PMI, PMI date, PMI STEMI, PMI NSTEMI, history of CABG,

history of PTCA, and ischemia on effort before (hospitalization). For AMI

STEMI, AMI NSTEMI, PMI STEMI, and PMI NSTEMI, all the features of the

feature expansion were eliminated. The set of features is then called “reduced.”

Evaluating the Trained Classification Models

In this task we aimed to build efficient systems that can discriminate the patients

into two classes regarding the severity of their ATS disease condition that can be

characterized as normal-mild or severe. In the previous section, we discussed how

we can quantify the CANGIO examination into one single value using the proposed

HybridScore. Based on that, we have defined the target variable for training

classifiers. From the machine learning standpoint, we also need the value of the

target variable for each patient, i.e., the indication about the class each patient

belongs. Unfortunately, this requires medical knowledge about specific values of

the ATS scores that could be used as thresholds. This cannot be provided since there

are not any related studies in the literature that propose such a cutoff value. In fact

one could make reasonable choices but there is no gold standard to use.

As a result, we should test all possible settings ofATS score and build classifiers for

all these cases. For example, we choose to use all integer values of the HybridScore in

[0,17]. Then we need to evaluate the classifiers produced for a fixed classification

problem, with a specific cutoff threshold. An evaluation of the produced classifiers is

also needed in a second level: to understand which classification is medically more

meaningful or easier to solve based on the available data. In other words, the

objectives of the analysis are both to find the interesting discrimination problems as

well as to find interesting solutions for them. In fact, this is a complex procedure where

the final classifiers are somehow evaluated by both supervised and unsupervised way.

And this is the most challenging issue we had to deal with in this study.

Supposing we have produced all classifiers for all thresholds of HybridScore, we

evaluate the produced system using multiple quality indicators. The first category of
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indicators is the classification accuracy and indices such as kappa statistic. Different

classifiers trained on the same target values (same threshold) can be directly

compared in terms of their classification accuracy measured using cross-validation.

On the other hand, if two classifiers have been trained on different values of the

target variable, then it is not trivial to compare them in a strict way.

Thus a different level in which we examine how interesting each specific

classifier is compared to other classifiers produced for different HybridScore

thresholds is to measure the gain in classification accuracy they present with respect

to an “empty-box” decision system that decides always for the largest class of

patients in every case. For instance, let us consider a discrimination problem with

60 % seriously diseased patients and 40 % normal-mild cases for which a classifier

gives 75 % prediction accuracy. Let us consider the second problem with 80–20 %

distribution of patients and a respective classifier achieving 82 % accuracy. We can

conclude that the first system with 15 % gain in accuracy retrieves a greater amount

of information from the available classes compared to the 2 % of the second one.

The class distribution is also called “class balance” and is an important determi-

nant for most of training algorithms. When one of the classes is overrepresented in a

training set, then the classification algorithm will eventually focus on the larger data

class and probably will lose the fine-detail information in the smaller class. To this

end, we adopted an additional evaluation strategy for the classification problems. In

particular, we selected all the patients from the smaller class and an equal number of

randomly selected patients from the larger class to train a classifier. This is repeated

five times and the reported accuracy is the average accuracy of the five classifiers.

This approach is denoted as “Balanced.” Secondly, we select at most 200 patients

from the two classes and follow the previous workflow. This strategy is called

“Balanced200.” The second strategy may reveal how a classifier scales to the size of

database, the number of patients provided for training, in a problem with a fixed

HybridScore threshold. If the accuracy does not drop dramatically when fewer

patients are used for training, then this is an indication of getting stable results. Note

that this is only an evaluation methodology since the final classifiers we created

were trained on the full dataset at each time, for the selected class definition.

Classification Results

Defining ATS Disease Severity Using DefA

According to the ATS severity definition DefA, which combines the number of

diseased vessels and the stenosis level, we trained classifiers for all possible

discrimination problems that could be set. In Fig. 1.10 we used the SVM classifiers

to evaluate the different discriminating problems. The last one considers the normal

or mildly diseased patients to be those with at most two arteries with at most 75 %

stenosis. The green line indicates the size of the largest class in each definition of

the mild-severe classes. The brown line is the SVM accuracy on all the data of the

M-DB, and the blue is the gain in accuracy, i.e., the difference between the SVM

accuracy and the largest class (green line). The large gain values indicate the

settings under which the classifier managed to retrieve much more information

from the data than that of the empty-box classifier.
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The gain might be increased for mainly two possible reasons. The first is the fact

that the problem setting we considered is more separable comparing to the other

settings. Thus the data properties (the characteristics of patients) are better

described by this specific class definition, and this also indicates that it is interesting

to understand the properties that led to this classification grouping “preference.”

The second reason might be the class balance. When classes are balanced in size,

the classifier may achieve lower accuracy value, but still with remarkable gain. This

is the role of the experiments we do on balanced subsets of the M-DB. The deep blue

line shows the average accuracy of the SVM for the 5 balanced data subsets, and the

red is the balanced case of 200 patients per class. If these two lines are close enough in

performance, it is evident that the classification performance is not heavily dependent

on the amount of available data (similarly one could state that the classifier retrieves as

much information as the data let under the specific class definition).

Having all these in mind, we can look back in Fig. 1.10 to observe that the

balanced class definitions clearly indicate the first three cases as the best out of all.

In particular, the first one, defining the severe class as having all patients with at

least one artery with at least 90 % stenosis level, is the overall best since the class

sizes of the full DB are more balanced. Table 1.5 summarizes the classification

results for all the patients and features of M-DB. The largest class is indicated as

Fig. 1.10 Classification results using SVM for different definitions (DefA) of discrimination

problems on M-DB
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Severe (S) or Mild (M); the size of a decision tree (DT) is denoted as (number of

leaves/number of total tree nodes). The performance of random forest (RF) and

SVM is also reported. The three different evaluation indices are denoted in the first

line: accuracy, kappa statistic, and accuracy gain. “Bal” indicates the subset of the

M-DB with balanced data classes, and “Bal200” are subsets that contain balanced

classes with at most 200 patients each. The k-statistic also indicates that in the first

three cases, the DT J48 retrieves the “real structure” of the data defined by the

considered class labels for the patients.

The DT corresponding to the first line of Table 1.5 is presented in Fig. 1.11.

The quality of a rule is indicated by the two numbers inside the rectangle leaf,

the first is the number of patients that this leaf decides for and – after the “/”

character – the number of patients that were incorrectly classified in the class of

the leaf.
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