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Suppressing Epidemics in Networks
using Priority Planning

Kevin Scaman, Argyris Kalogeratos, Nicolas Vayatis

Abstract—In this paper, we analyze a large class of dynamic resource allocation (DRA) strategies, named priority planning, that aim to
suppress SIS epidemics taking place in a network. This is performed by distributing treatments of limited efficiency to its infected
nodes, according to a priority-order precomputed offline. Under this perspective, an efficient DRA strategy for a given network can be
designed by learning a proper linear arrangement of its nodes. In our theoretical analysis, we derive upper and lower bounds for the
extinction time of the diffusion process that reveal the role of the maxcut of the considered linear arrangement. Accordingly, we
highlight that the cutwidth, which is the minimum maxcut of all possible linear arrangements for a network, is a fundamental network
property that determines the resource budget required to suppress the epidemic under priority planning. Finally, by making direct use
of our theoretical results, we propose a novel and efficient DRA strategy, called maxcut minimization (MCM), which outperforms other
competing strategies in our simulations, while offering desirable robustness under various noise profiles.

Index Terms—Epidemics, networks, control, maxcut, SIS diffusion process, treatment allocation, extinction time
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1 INTRODUCTION

D IFFUSION processes arise in systems involving agents
whose behaviors depend on their close environments.

Diseases, computer viruses, and ideas are spread through
a network by means of interactions among users. In such
situations, a change in one agent may affect the state or
actions of the neighboring agents, and under certain con-
ditions, may result in a change at the network scale. A
fair body of recent articles consider the problem of influ-
ence maximization [1], [2], which attempts to maximize the
spread of a diffusion process. On the other hand, being
able to dynamically suppress or remove an undesired in-
formation or social diffusion process has received relatively
less attention, though critical in many real-life situations.
In public health, epidemiologists study scenarios in which
the spread of a virus needs to be controlled. Moreover,
various analogues emerge in modern information networks
in which a diffusion can be engineered to be viral and may
cause positive, but sometimes also hugely negative, social
and economic effects [3], [4], [5]. As a matter of fact, negative
publicity is highly damaging for organizations and brands:
even though ill-founded, a slander can affect their interests
due to the massive scale of buzz-like propagation.

The control of diffusion processes has been studied in
various fields in the past, including epidemiology and com-
puter networks resilience. The respective literature can gen-
erally be divided in three complementary lines of research,
the third of which is the line where our work lays:
a) Static vaccination strategies. Most of the epidemic liter-

ature focuses on static control actions such as perma-
nently removing a set of edges or nodes of the network
[6], [7], [8], [9], [10]. In this case, the available budget
is considered fixed, and the effect of a control action
permanent [11], [12].
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b) Budget optimization. Complementary to resource alloca-
tion, the determination of the budget size to be spent at
each time step, which aims to fulfill cost and efficiency
constraints, is critical for the resulting strategy. Several
such studies assume that the network administrator is
capable of storing resources for later use [13], [14], [15].
Also, a usual simplifying assumption is the uniform
mixing, i.e. the infected nodes are uniformly scattered
in the network. Therefore, these studies do not address
the problem of how exactly to allocate the resources on
the nodes of the network, but rather estimate the budget
size that can cause a desired macroscopic result.

c) Dynamic resource allocation. A few studies consider dy-
namic strategies for allocating resources against epi-
demics. Contact-tracing [16] is one of the well-known
such strategies that heals the neighbors of infected
nodes. In practice, this approach was shown ineffi-
cient in containing an epidemic, especially when that
is beyond an initial state. In the definition of efficient
strategies, among many graph features, the role of the
cutwidth has already been underlined in [17], [18] and
[19] independently. In this paper, we further explore
the power of this particular concept for the diffusion
analysis and control.
Our major contribution is the introduction and analy-

sis of a particular class of strategies for suppressing an
undesired Susceptible-Infected-Susceptible (SIS) diffusion
process. We allow the network administrator to change
the distribution of a set of treatment resources during the
diffusion. Each resource represents a targeted and temporal
action that can affect the behavior of an individual node
of the network. Reacting to fast spreading phenomena is
difficult to achieve, whereas here we consider a simple class
of dynamic resource allocation (DRA) strategies that rely on
a priority-order precomputed offline. By focusing on the first
infected nodes in the priority-order, such a strategy grad-
ually suppresses the diffusion and eventually removes the
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contagion. The role of the maxcut of a considered priority-
order is highlighted by developing tight bounds for the ex-
tinction time of the epidemic, when the budget is bounded
and the starting state is the total infection. Accordingly, the
network’s cutwidth determines the resource budget required
to suppress such epidemic under priority planning. Our
proposed DRA strategy is called maxcut minimization (MCM)
and comes as a natural and straightforward utilization of
our theoretical findings.

The most related method to priority planning and MCM
is the recent CURE policy [17] which was being developed
independently to our work. The differences between the two
works are briefly summarized in the following points:

– Diffusion model: we consider a more general setting that
models interesting additional aspects, such as the alloca-
tion of multiple treatment resources of limited efficiency
(i.e. that can be accumulated on a single node only up to
a threshold), and node self-recovery. This is in contrast
to CURE that concentrates all the resources to a single
node and is hence applicable only when the number of
treatments to distribute is equal to 1.

– Theoretical results: our theoretical results are tighter, as we
present a threshold 4 times lower than that in [17]. This
is a critical improvement for cases where the treatment
resources are expensive.

– Empirical evaluation: comparing with the theoretical work
in [17], our work is two-fold. Besides the sound theo-
retical results, we are the first to provide a testbed for
large-scale experimental assessment of DRA strategies
that rely on a healing plan. We thus investigate the
practical issues related to the implementation and testing
of strategies such as MCM and CURE.

– Performance: using our testbed, we perform experiments
on benchmark real and artificial networks. The reported
results show that MCM is more efficient than CURE as
well as other competing approaches. The main drawback
of CURE is that, under technical conditions encountered
in most of our experiments, it enters a waiting phase
which unnecessarily degrades its performance. Finally,
we illustrate the robustness of MCM strategy to various
noise profiles on the network structure.

The remainder of the paper is organized as follows: Sec. 2
describes the diffusion model we used as well as the control
actions available to the network administrator. Sec. 3 pro-
vides our derived upper and lower bounds on the extinction
time of the diffusion process under a priority-order, and
Sec. 4 provides detailed proofs for the theoretical results.
These results provide insight into the efficiency of those
strategies and motivate the development of an efficient
strategy in Sec. 5. Sec. 6 presents experimental results and
show that: i) the derived bounds are tight, thus validating
the fundamental role of the maxcut in the evaluation of such
strategies, ii) the proposed MCM strategy outperforms its
competitors in a wide range of scenarios that are of high
interest for applying in practice epidemic control policies.
Finally, Sec. 7 provides an analysis of the behavior of the
MCM strategy under various noise profiles, and show the
robustness of the method with respect to uncertainties in
the location of individuals in contact networks.

2 SETUP AND MAIN DEFINITIONS

2.1 Epidemic and control model
We consider the standard Susceptible-Infected-Susceptible
(SIS) model [20], and model the control action as local and
expensive treatments. These treatments are distributed in the
network in order to reduce the epidemic under predefined
cost constraints. Among other application examples, con-
trolling epidemics using antidotes, limiting rumors via tar-
geted action, or allocating resources geographically to fight
against a societal problem, seem valid scenarios for such a
diffusion and control model. We proceed by introducing the
formal setup.
Notations. Let G= (V, E) be a network of N = |V| nodes
with adjacency matrix A, where Aij = 1 if i 6= j and edge
(i, j)∈E , else Aij = 0. Let also 0 and 1 be vectors of size N
that are, respectively, all-zeros and all-ones, and 1{·} be the
indicator function.
Epidemic model. A state vector X(t)∈RN represents the
state of the diffusion process via the nodes’ infection states:
for each node i∈{1, ..., N}, Xi(t) = 1 if node i is infected
at time t, else Xi(t) = 0. We assume no incubation period,
therefore, a node becomes contagious upon infection. Let
the control action be represented as a resource allocation vector
ρ(t), where ρi(t)> 0 iff a resource is being given to node i
at time t. In such a case, we say that node i is being healed
by the resource. Following the formalism of [21], we model
an epidemic under a control action as a stochastic process:

Definition 1 (Epidemic under control action). Consider ρ(t)
a vector-valued stochastic process on RN+ . The state vector X(t)
of an epidemic under the control action ρ(t) is a stochastic process
on {0, 1}N evolving with the following transition rates:

Xi(t) : 0→ 1 at rate β
∑
j AjiXj(t);

Xi(t) : 1→ 0 at rate δ + ρi(t),
(1)

where β is the transmission rate over an edge, and δ is the self-
recovery rate, both being essential characteristics of the infection.

Healing. We consider dynamic resource allocation (DRA)
strategies that take as input the network G, the SIS diffu-
sion characteristics β and δ, the current and past network
states X(t′≤ t), and return the distribution of the treatment
resources ρ(t) (Eq. 1). In other words, a DRA strategy uses
the information available up to time t in order to determine
a control action ρ(t). This constraint is made formal in the
following definition.

Definition 2 (DRA strategy). A dynamic resource allocation
strategy ρ(t) is a stochastic process that is adapted to the natural
filtration associated to X(t).

Note that, if ρ(t) only depends on the current state of
the network X(t), then X(t) is a Markov process. We
will see in Sec. 2.2 that priority planning is a class of such
strategies, that allows us to limit the analysis to the simpler
case of continuous-time Markov processes. In addition to
this constraint, we also introduce a budget limitation on the
amount of resource available for distribution, and a resource
accumulation limitation regarding the amount of resource that
can be allocated on a single node.

Definition 3 (Control action under resource budget). Let
r > 0 be a resource budget, and ρ≥ 0 a resource threshold limiting
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the amount of resource that can be allocated on a single node. A
control action ρ(t) under limited budget r and resource threshold
ρ is a DRA strategy s.t. ∀t> 0, ‖ρ(t)‖1 =

∑
i∈V ρi(t)≤ r and

‖ρ(t)‖∞= maxi∈V ρi(t)≤ ρ.

Example 1 (Fixed number of treatments). With the addi-
tional constraints that ||ρ(t)||0 =

∑
i 1{ρi(t)>0}≤ q and that

∀i, ρi(t)∈{0, R}, we may consider a setting in which a
number of q treatments of resource efficiency R are dis-
tributed to infected nodes at time t. This control action
corresponds to the resource budgets r= qR and ρ=R.

Remark 1. Although the setting of this work is described
using a constant resource budget r, the strategies developed
hereafter can also be applied to the case of lower bounded
varying resource budget r(t)≥ r by simply considering r
instead of r(t).

Extinction time. In order to account for the criticality of
the contagion, we consider the standard quality measure of
expected extinction time.

Definition 4 (Extinction time). For a diffusion process X(t)
under control action with initial state X(0) = x, the extinction
time of the diffusion process is the random quantity defined as:

τx = min{t∈R+|X(0) =x, X(t) =0}. (2)

The extinction time depends on the chosen DRA strategy,
and the main quality measure that we consider in this work
is its expectationE[τx]. Moreover, we state our results in the
worst possible initial situation where all nodes are infected.
Note that this expectation is never infinite and may present
sub-critical (respectively super-critical) behavior [21], in the
sense that E[τx] may be upper bounded by a polynomial
function (respectively lower bounded by an exponential
function) of the network size N . In the sub-critical regime,
we say that the DRA strategy removes the epidemic in
reasonable time, and that, in the super-critical regime, the
DRA strategy is not sufficiently efficient to remove the
epidemic in reasonable time.

2.2 Priority planning: a healing plan to gradually re-
move a contagion
According to Definition 2, the control action ρ(t) of a
DRA strategy depends on the history of variations of the
contagion process X(t). Among the novelties of our work,
we introduce strategies that involve an ordering on the
network nodes that accounts for the criticality of each node
w.r.t. the overall contagion process. We name the class of
DRA strategies that are based on a priority-order as priority
planning. These concepts are formally defined below.

Definition 5 (Priority-order). A priority-order is a bijective
mapping ` : V →{1, ..., N} of the N nodes of the network
s.t. `(v) is the position of node v in the priority-order.

Definition 6 (Priority planning). Priority planning is a DRA
strategy under limited budget r and resource threshold ρ that
distributes resources to the top-q infected nodes according to a
fixed priority-order ` of the network nodes, where q is the number
of nodes such that the allocated amount of resources matches the
available resource budget r. More specifically, the strategy heals
the first q(t) = min

{
d rρe,

∑
iXi(t)

}
infected nodes according

to the respective mapping `, and allocates the resource budget as
follows:

ρi(t) =

{
r
d rρ e

if Xi(t) = 1 and `(vi) ≤ θ(t);
0 otherwise,

(3)

where θ(t) is a threshold adjusted s.t.
∑
i 1{ρi(t)>0}= q(t).

This definition may be regarded as a description of a class
of simple planning strategies for the removal of a contagion:
a healing plan, i.e. a priority-order for healing the nodes, is
determined prior to the beginning of the diffusion and is
followed no matter how the diffusion process evolves. The
plan proceeds from the first to the last node in the priority-
order, hence aims to remove gradually the contagion from
the network. In what follows, we refer interchangeably to a
priority-order and its corresponding mapping `.

Remark 2. Modification of the distribution of the resources
will only appear when there is a change in the network state
(i.e. a new node infection or recovery). Thus, in practice, the
distribution of the resources needs to be updated only at
those specific times.

2.3 Maxcut and cutwidth

The concept of cutwidth is well known in graph theory (see
for instance [22]). The importance of this concept for con-
taining epidemics on graphs has been pointed out recently
[17], [19]. We recall here its definition that we adapt with
our notations of the priority-order.

Definition 7 (Cut of a set of nodes). For an undirected
network G= (V, E) with adjacency matrix A, the cut of a set
of nodes I ⊂V is the number of edges between nodes of I and
nodes of its complementary set in V :

C(I) =
∑

i,j
Aij1{vi∈I, vj /∈I}. (4)

For a priority-order `, we refer to as cut at position c,
Cc(`), the cut of the set of nodes before position c in `:

Cc(`) =
∑

i,j
Aij1{`(vi)<c≤`(vj)}. (5)

Definition 8 (Maxcut of a priority-order). For a network with
N nodes and adjacency matrix A, and for a given priority-order
`, the maxcut of ` is defined as:

C∗(`) = max
c=1,...,N

Cc(`). (6)

Finally, the minimal value of the maxcut over all possi-
ble priority-orders is an inherent property of the network
structure known as cutwidth.

Definition 9 (Cutwidth). The cutwidth of a network with N
nodes and adjacency matrix A is defined as:

W = min
`
C∗(`). (7)

We will see in Sec. 3 that this quantity characterizes the
effectiveness of priority planning in a given network. Fig. 1
illustrates two priority-orders for a small network and their
respective maxcut (see Definition 8). The priority-order of
Fig. 1(b) is better, indeed optimal, and its maxcut matches
the cutwidthW of the network.
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a b c d e

v1 v2 v3 v4 v5

v1 v3 v4 v2 v5

cut = 1

cut = 3

(a) Priority-order ` : V →{1, 2, 3, 4, 5}

a b c d e

v1 v2 v3 v4 v5

v1 v3 v4 v2 v5

cut = 1

cut = 3(b) Priority-order `′ : V →{1, 3, 4, 2, 5}

Fig. 1. Two priority-orders (from left to right) leading to different maxcuts:
C∗(`)= 3 for (a) and C∗(`′)= 1 for (b). The cut (vertical red line) sepa-
rates the nodes in two sets (white and red). The second priority-order `′
is optimal since the network has a cutwidthW =1.

3 TIGHT BOUNDS ON THE EXTINCTION TIME

This section contains a detailed theoretical analysis of pri-
ority planning strategies. Since a priority-order is a pre-
defined healing plan which is followed throughout the
whole process of suppression, the question of whether the
contagion will be removed or not depends on the capacity
of the control action to accomplish each of the steps of the
plan. Intuitively, the most difficult step is at the position(s)
where the maxcut of the priority-order lays, where we find
the maximum number of infectious edges during the plan.
Our results prove the determinant role of the maxcut of
the priority-order for the expected extinction time of an
epidemic. It is thus justified that this is the right quantity
to minimize in order to enforce the removal of a contagion.

3.1 Theoretical bounds for the extinction time
Denote by 1 the vector of ones in RN . Theorem 1 be-
low, states an upper bound for the expected extinction time
E[τ1] under a considered priority-order, when the budget is
bounded and the initial state is a total infection x=1. This
indicates that, above a threshold value, the diffusion process
converges in reasonable time to its absorbent state, and this
threshold depends on the maxcut, denoted as C∗(`), of the
considered priority-order. Detailed proofs for the theorems
are provided in Sec. 4.

Theorem 1. Let G be a totally infected network of N > 1 nodes,
i.e. Xi(0) = 1, ∀i, and d is the maximum node degree of the
network. Consider a priority planning ` under constant resource
budget r > 0. We set:
• q= d rρe the number of treated nodes, and

• ε= d(3+2 lnN+4q)
C∗(`) .

Assume that:

r + δq > βC∗(`)
(
1 + 2

√
ε+ ε

)
. (8)

Then, the upper bound for the expected extinction time E[τ1] is:

E[τ1] ≤ 3N + 6q(1 + ln q)

r + δq − βC∗(`) (1 + 2
√
ε+ ε)

. (9)

Eq. 9 relates E[τ1] to the number of infectious edges in the
worst step of the plan which corresponds to its maxcut. The
next theorem is a simplified version of Theorem 1.

Theorem 2. Under the hypotheses of Theorem 1, the same
definitions for ε and q values, and the same assumption:

r+ δq >βC∗(`)
(
1 + 2

√
ε+ ε

)
,

we have: E[τ1] ≤ 6N

β
. (10)

Remark 3. Theorems 1 and 2 hold also for any initial
infection state X(0) =x∈{0, 1}N , as the E[τx] increases
w.r.t. x (see Lemma 1). Thus, when the resource budget is
sufficiently large, priority planning strategies are efficient
regardless of the initial infection state.

The next theorem shows that, when there is no self-
recovery (δ= 0), and when the resource budget is below
a threshold value, the expected extinction time is lower
bounded by the exponential of the maxcut.

Theorem 3. Let G be a totally infected network of N > 1 nodes,
i.e. Xi(0) = 1, ∀i, and d is the maximum node degree of the
network. Let also δ= 0, and consider a priority planning ` under
constant resource budget r > 0. We set:
• q= d rρe the number of treated nodes, and
• η ∈ ]0, 12 [.

Assume that q < C
∗(`)
d and

r < (1− η)βC∗(`)(1− dq

C∗(`)
). (11)

Then, the lower bound for the expected extinction time E[τ1] is:

E[τ1] ≥ 1

r
exp

(
η2

12

(C∗(`)
d
− q
))
. (12)

We will see in the next section that, under further
assumptions on the network type, Theorem 3 implies the
explosive behavior of the extinction time over the resource
threshold βC∗(`). These results do verify our intuition that
completely removing a contagion requires the resource
strength to be as high as needed in order to proceed through
the worst step of the specified plan (see further discussion in
Sec. 3.3).

3.2 Relationship between critical behavior and maxcut
In order to make more apparent the relationship between
the critical behavior of the expected extinction time and the
maxcut of the priority-order which is used for control, we
now derive theorems in the restricted setting in which the
maximum degree is small w.r.t. the maxcut (see Sec. 3.3 for
precise examples in which the assumption holds):

Assumption 1. Let (GN ) be a sequence of networks of
increasing size of N nodes and rN > 0 be a sequence of
resource budgets. Let also qN = d rNρN e, dN be the maximum
node degree of GN , and assume lim infN rN > 0. We then
assume that:

∃α > 0 s.t.
qNdN
C∗(`N )

= O(N−α). (13)

Under this assumption, Theorems 4 and 5 show that
βC∗(`) acts as a threshold between a sub-critical and a
super-critical regime for the resource budget r. Below this
threshold, the epidemic is removed in reasonable time.
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Above this threshold, the epidemic cannot be removed by
the considered priority planning.

Theorem 4 (Sub-critical behavior). Under Assumption 1, if

lim inf
N

rN
βC∗(`N )

> 1, (14)

then: E[τ1] = O(N). (15)

Theorem 5 (Super-critical behavior). Let δ= 0 (no self-
recovery). Under Assumption 1, if

lim sup
N

rN
βC∗(`N )

< 1, (16)

then, for N sufficiently large:

E[τ1] ≥ exp
(
Nα/2

)
. (17)

These results show the existence of a resource threshold
βC∗(`) for priority planning, that may be related to the
epidemic threshold of the epidemiology literature [7]. Such
a result is fundamental for understanding the efficiency of
priority planning strategies. The simulations in Sec. 6 attest
that minimizing this resource threshold is an efficient way
to dynamically control a diffusion process.

Remark 4. While theses results consider a fixed priority-
order, they also provide a quantitative measure of the
quality of priority planning strategies as a whole. More
specifically, Theorems 4 and 5 imply that, under Assump-
tion 1, priority planning strategies are unable to suppress
an epidemic if the resource budget is below βW (see Def-
inition 9). Above this value, a priority-order can be found
that achieves this specific goal. Note that recent theoretical
advances suggest that, up to a multiplication by a constant,
the cutwidth W may lower bound the resource threshold
of any DRA strategy [23]. This is a strong indication that
priority planning may be optimal w.r.t. minimizing E[τ1].

3.3 Interpretation of results
Comparison to previous results. The recent work in [17]
investigates the use of the cutwidth for designing efficient
DRA strategies. That work introduces a DRA strategy, called
the CURE policy, using a formalism similar to priority-
orders called crusades. However, the CURE policy works in
a setting with no self-healing (δ= 0) and no limitation on
the number of resources that can be allocated to a single
node (ρ= +∞). As a result, all the resources are always
given to one single node, and the CURE policy is only
applicable when the number of treatments to distribute is
equal to 1 (i.e. q= d rρe= 1, see Sec. 2). The model considered
in the present paper is thus more general and closer to
realistic settings. Also, our theoretical results are tighter, as
we present a threshold four times smaller than that in [17],
matching βC∗(`) in the restricted setting of Assumption 1.
More specifically, their analysis can be seen as a particular
case of ours, as Theorem 1 implies the following result,
similar to Theorem 1 and Corollary 1b of [17]:

Corollary 1. Let q= 1, δ= 0, β= 1, and N ≥ 20. Consider a
priority-order ` and assume that:

r ≥ 4C∗(`) and r ≥ 16d log2N. (18)

Then the upper bound for the expected extinction time E[τ1] is:

E[τ1] ≤ 26N

r
. (19)

Particular bounds for specific graph models. We present
three application examples for our theoretical results.

Example 2 (Sparse networks with bounded degrees). The
condition qNdN

C∗(`N ) =O(N−α) is verified for sparse networks
with bounded node degrees s.t. the cutwidthW is a power
of N (recall that C∗(`)≥W , see Definition 9), and when
the number of treatments qN is bounded by lnN , i.e.
qN =O(lnN). The condition on W is verified for many
standard networks (e.g.

√
N for 2D grids, N−1

2 for star
networks and N2

4 for complete graphs), with the notable
exception of trees whereW is O(lnN) [24].

Example 3 (2D grids). For regular 2D grids of N nodes,
W =

√
N and dN = 4. Hence, if the number of treated nodes

is bounded by qN =O(Nα) where α< 1
2 , then Assump-

tion 1 holds. For instance, as in Example 1, fixing ρN = rN
q

where q ∈N is sufficient for Assumption 1 to hold. The anal-
ysis of Sec. 3.2 implies that, if rN <β

√
N , then no priority-

order will manage to remove the epidemic in reasonable
time. However, if rN >β

√
N , then at least one priority-

order (see Sec. 5) can remove the epidemic.

Example 4 (Complete networks). Complete networks are
trivial settings for which all priority-orders lead to the same
efficiency, since all nodes have the same connectivity. We
haveW = N2

4 (or (N+1)(N−1)
4 if N is odd) and dN =N − 1,

hence, if the number of treated nodes is bounded by
qN =O(Nα) where α< 1, then Assumption 1 holds. The
analysis of Sec. 3.2 implies that, if rN <β

N2

4 , then no
priority-order will remove the epidemic in reasonable time.
However, if rN >βN

2

4 , all priority-orders will.

4 TECHNICAL PROOFS

Since the main results hold for any priority-order, we may
relabel the nodes of G according to the priority-order `, and
thus consider that `(vi) = i without loss of generality.

Notations. First, let x∈{0, 1}N be a state vector of size N
(i.e. describing the state of the network during the diffusion
process), 0 and 1 vectors of size N that are all-zeros and all-
ones, respectively, and x̄=1−x. For s⊂{1, ..., N} a subset
of nodes, let also 1s = (1{i∈s})i be the indicator vector with
ones for nodes in the set s. Then, we denote the number
of infected nodes in network state x as N

I
(x) =1>x, while

E
I−S (x) =x>Ax̄ as the number of edges from a contagious

to a healthy node, to which we also refer to as infectious
edges. We will also make use of the following variables:
q= d rρe, b(x) = min{q,N

I
(x)}, and ρ′= r

q +δ is the effective
healing rate of node which is being treated.

We now define infection states that will be useful for
proving our main results.

Definition 10. For n ∈ {1, ..., N}, let xn =1{n,...,N} be a state
vector such that all nodes before position n in the priority-order
are healthy, and all nodes after n are infected.

Informally, xn can be seen as the nth step of an ideal
removal of the epidemic such that all the nodes after the
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front remain infected while the nodes are healed one by
one following the priority-order. Starting with xn, adding
new infected nodes can either increase or decrease the
expected recovery time. In order to bound these changes,
we define best and worst additional infections. We will use
the following notation for the set of nodes that are possible
supports for the increment of infection:

Sjn = {s ∪ {n, ..., N} : s ⊂ {1, ..., n− 1}, |s|= j} .

Definition 11. Let yjn = argmins∈Sjn E[τ1s ] and zjn =
argmaxs∈Sjn E[τ1s ] be, respectively, the best and worst state
vectors after j additional infections from state xn.

In the following, zjn is used for proving upper bounds
(Theorems 1 and 2) and yjn lower bounds (Theorem 3).
Theorems 4 and 5 of the article are simple corollaries of
Theorems 1 and 3, respectively. The proofs of Theorems 1,
2, and 3 rely on the following lemmas.

4.1 Main intermediate results and lemmas
Lemma 1. Under priority planning, the function x 7→E[τx] is
monotonically increasing with respect to the natural partial order
on {0, 1}N (i.e. x≤ y if ∀i, xi≤ yi).
Lemma 2. Let x, y ∈{0, 1}N be two state vectors s.t. x≤ y.
Then, denoting j=

∑
i yix̄i as the number of infected nodes in y

that are not infected in x, the following inequalities hold:

E
I−S (x)− jd ≤ E

I−S (y) ≤ E
I−S (x) + jd, (20)

where d= maxi
∑
j Aij is the highest degree of the network.

Lemma 3. Let `(vi) = i for all nodes vi ∈ V , and xn be defined
as in Definition 10. Then, the maxcut of ` is equal to:

C∗(`) = max
n

E
I−S (xn). (21)

Lemma 4. For every state vector x, we have:

E[τx] = E[T1 + τX(T1)], (22)

where T1 = min{t≥ 0 : X(t) 6=x}.

Proposition 1. Set ujn =E[τzjn ] where zjn is defined as in
Definition 11. We have the following recurrence inequality:

ρ′b(zjn)(ujn − uj−1n ) ≤ 1 + βE
I−S (zjn)(uj+1

n − ujn). (23)

Proposition 2. Let zjn be defined as in Definition 11. Then
the following bound for the expected extinction time under the
`-priority planning and starting from a total infection holds:
∀K ≥ 1, ∀η ∈ ]0, 1[, and also
r+ δq > max

{
(1 + 1

η )βdq,[
1

1−η
∑N
n=1+q

∏K
j=0 βEI−S (zj+qn )

] 1
K+1

}
,

E[τ1] ≤
∑K
k=0 f(k) + 2q(1 + ln q)

(r + δq)(1− η − f(K + 1))
, (24)

where: f(k) =
N∑

n=1+q

k−1∏
j=0

βE
I−S (zj+qn )

r + δq
. (25)

Proposition 3. Let q be the number of treatments and set
uqn =E[τyqn ] where yqn is defined as in Definition 11. Then

uqn−u
q
n+1 ≥

1

r

K∏
j=q

β(E
I−S (xn)− jd)

r
. (26)

Lemma 5. Let a≥ 0 and ξ be the (unique) positive solution to
ξ− ln(1 + ξ) = a. The following inequality holds:

ξ ≤ a+ 2
√
a. (27)

4.2 Proofs of theorems

Proof of Theorem 1. This proof relies on three steps: i) de-
composing the removal of the epidemic into simple steps
(from state xn to state xn+1) using Lemma 4, ii) bounding
the duration of each step by showing that new infections
are rare using a simple recurrence equation in Proposition 1,
iii) summing the duration of each step to recover an upper
bound on the expected extinction time (see Proposition 2).
Using Lemma 2 and Proposition 2, we obtain a bound on
the extinction time depending on C∗(`) = maxnEI−S (xn)
(using Lemma 3),
∀K ≥ 1, ∀η ∈ ]0, 1[, and also

ρ′> max

{
(1 + 1

η )βd,

[
N

1−η
∏K
j=0

βE
I−S (z

j+q
n )

q

] 1
K+1

}
,

E[τ1] ≤
∑K
k=0 f(k) + 2q(1 + ln q)

ρ′q(1− η − f(K + 1))
, (28)

where: f(k) = N
k−1∏
j=0

β(C∗(`) + (q + j)d)

ρ′q
, (29)

using
∑N
n=1+q

∏k−1
j=0

β(E
I−S (xn)+(q+j)d)

ρ′q ≤

N
∏k−1
j=0

β(C∗(`)+(q+j)d)
ρ′q .

(30)

Finally, we need to select proper values for K and η
and derive the final result. Let η∗= 1− e−1, ξ be the unique
solution of ξ− ln(1 + ξ) = d(lnN+1)

Ĉ∗
where Ĉ∗= C∗(`) + qd,

and K∗= b Ĉ
∗

d ξc. Using the particular value of K∗,

∑K∗

j=0 ln(1 + j d
Ĉ∗

) ≤
∫K∗ +1
0 ln(1 +x d

Ĉ∗
)dx

= (K∗+ 1 + Ĉ
∗

d ) ln(1 + (K∗+ 1) d
Ĉ∗

)− (K∗+ 1)

≤ (K∗+ 1) ln(1 + (K∗+ 1) d
Ĉ∗

) + Ĉ∗
d (ln(1 + ξ)− ξ)

= (K∗+ 1) ln(1 + (K∗+ 1) d
Ĉ∗

)− ln(N)− 1,

(31)

where the second inequality is due to d
Ĉ∗

(K∗+ 1)≥ ξ and
the monotonic decrease of x 7→ ln(1 +x)−x for x≥ 0.

From Eq. 31, we derive that:

f(K∗+ 1)≤ (1− η∗)
[
β
ρ′q (Ĉ∗+ (K∗+ 1)d)

]K∗+1
.

And thus we have:
for r+ δq >β(C∗(`) + ((1 + 1

η∗ )q +K∗ + 1)d),

E[τ1] ≤
∑K∗
k=0 f(k)+2q(1+ln q)
ρ′q(1−η∗−f(K+1))

≤
N

∑K∗
k=0

[
β
ρ′q (Ĉ

∗+(K∗+1)d)
]k

+2q(1+ln q)

ρ′q(1−η∗)(1−f(K∗+1))

≤ 3N
ρ′q−β(Ĉ∗+(K∗+1)d)

+ 6(1+ln q)
ρ′(1−f(K∗+1))

≤ 3N+6q(1+ln q)

ρ′q−β(Ĉ∗+(K∗+1)d)
.

(32)
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Finally, making use of Lemma 5, dK∗≤ Ĉ∗ξ≤ d(lnN + 1)

+ 2
√
Ĉ∗d(lnN + 1), and

(1 + 1
η∗ )q +K∗ + 1

≤ 3q + lnN + 2 + 2
√
C∗(`)
d (lnN + 1)(1 + qd

C∗(`) )

≤ 4q + 2 lnN + 3 + 2
√
C∗(`)
d (lnN + 1)

≤ C
∗(`)
d (ε+ 2

√
ε),

(33)

using
√
a+ b≤

√
a+
√
b and 2

√
ab≤ a+ b, and where

ε= d(3+2 lnN+4q)
C∗(`) . This inequality finally proves bound.

Proof of Theorem 2. For r+ δq > βC∗(`)(1 + 2
√
ε+ ε),

Eq. 32 leads to:

E[τ1] ≤ 3N+6q(1+ln q)

r+δq−β(Ĉ∗+(K∗+1)d)

≤ η∗(3N+6q(1+lnN))
βqd

≤ η∗(3N+6(1+lnN))
β

≤ 6N
β ,

(34)

since q+K∗+ 1≤ C
∗(`)
d (ε+ 2

√
ε)− q

η∗ according to Eq. 33
and 1 + lnN ≤N .

Proof of Theorem 3. This proof is similar to that of Theo-
rem 1, except that the extinction time is now lower bounded
by the worst step of the strategy whose cut is equal to
C∗(`). We then show that this step has a duration at least
exponential in the cutwidth value, leading to the result. Let
ujn =E[τyjn ] where yjn is defined as in Definition 11, and n∗

be an index of maximum cut, i.e. C∗(`) =E
I−S (Xn∗). Then:

u01 = uqq+1

=
∑N
n=1(uqn−u

q
n+1) + uqN+1

≥ uqn∗ −u
q
n∗+1

≥ 1
r

∏K
j=q

β(C∗(`)−jd)
r .

(35)

The first inequality is due to the positivity of each uqn−u
q
n+1

(see Lemma 1), and the second is due to Proposition 3. The
final result is achieved by maximizing the product w.r.t. K.

Let η ∈ ]0, 12 [, ε∈ ]0, η[, and assume that q≤ C
∗(`)
d .

Let also K∗= q+
⌊
(η− ε)(C

∗(`)
d − q)

⌋
. Then K∗≥ q,

K∗< C
∗(`)
d ≤ n∗− 1 due to Lemma 2, and the choice of

K∗ is valid. Eq. 35 leads to:

u01 ≥ 1
r

(
β(C∗(`)−K∗d)

r

)K∗−q+1

≥ 1
r

(
(1− η + ε)β(C

∗(`)−qd)
r

)K∗−q+1
.

(36)

If r < (1− η)β(C∗(`)− qd), then:

u01 ≥ 1
r

(
1 + ε

1−η

)K∗−q+1

≥ 1
r e

ln(1+ ε
1−η )(η−ε)(

C∗(`)
d −q).

(37)

Finally, choosing a value ε∗= argmaxε ln(1 + ε
1−η )(η− ε)

leads to ln(1 + ε∗

1− η )(η− ε∗)≥ ( η
2(1+ln 2) )

2 and the desired
result.

Proof of Corollary 1. Let q= 1, δ= 0, β= 1 and N ≥ 20. If
4C∗(`)≥ 16d ln2N , then, with the notation of Theorem 1,

ε =
d(7 + 2 lnN)

C∗(`)
≤ ln 2

2
(1 +

7

2 lnN
), (38)

and: 1 + 2
√
ε+ ε ≤ 4. (39)

Hence, if r ≥ 4C∗(`), Theorem 1 is applicable and:

E[τ1] ≤ 3N + 6

r − C∗(`) (1 + 2
√
ε+ ε)

≤ 26N

r
. (40)

On the contrary, if 4C∗(`) < 16d ln2N , then:

C∗(`)(1 + 2
√
ε+ ε)

= C∗(`) + 2
√
C∗(`)d(7 + 2 lnN) + d(7 + 2 lnN)

≤ d
(

7 + 2(1 + 2
ln 2 ) lnN + 4√

ln 2

√
lnN(7 + 2 lnN)

)
≤ 16d ln2N,

(41)

by a simple function analysis. Hence, if r≥ 16d ln2N , then
Theorem 1 is applicable and:

E[τ1] ≤ 3N + 6

r − C∗(`) (1 + 2
√
ε+ ε)

≤ 26N

r
. (42)

4.3 Proofs of propositions and lemmas
Proof of Lemma 1. Let x, y ∈{0, 1}N be two initial net-
work states s.t. x≤ y. If X(t), Y (t) are diffusion pro-
cesses s.t. X(0) =x and Y (0) = y, then the strong mono-
tonicity of the Markov process X(t) implies that ∀t≥ 0,
P(X(t) =0) ≥ P(Y (t) =0), which may be rewritten as
P(τx≤ t)≥P(τy ≤ t). This means that τy dominates τx and
thus E[τx]≤E[τy]. The strong monotonicity derives from
a standard coupling argument, since the infection rate and
healing rate of each node is, respectively, non-decreasing
and non-increasing w.r.t. the infection state X(t).

Proof of Lemma 2. The set of infected nodes at state y con-
sists of the infected nodes at state x and exactly j additional
nodes. Since a node can have at most d neighbors, then each
of the j additional nodes can add or remove at most d edges
to the set of infectious edges of the network. Let xi = 1−xi
and yj = 1− yj , then more formally:

|E
I−S (y)−E

I−S (x)| = |
∑
i,j Aij(yiyj − xixj)|

≤
∑
i,j Aij |yiyj − xixj |.

(43)

However, since x≤ y, |yiyj −xixj | gets simplified to
yixiyj + yjxjxi. Due to the symmetry of A, we have:

|E
I−S (y)−E

I−S (x)| ≤
∑
i,j Aijyixiyj +

∑
i,j Aijyixixj

=
∑
i,j Aijyixi(yj +xj)

≤
∑
i,j Aijyixi

≤ jd.

(44)

Proof of Lemma 3. Since xn =1{n,...,N}, we have
E
I−S (xn) =

∑
ij Aijxnixnj =

∑
ij Aij1{j <n≤ i}, and the

maximum over all n∈{1, ..., N} matches Definition 8 of
C∗(`) when `(vi) = i (since A is symmetric).

Proof of Lemma 4. The lemma follows from the Markov
property of the process X(t) when the control action is a
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priority planning. The extinction time after T1, i.e. the first
change of the state vector from X(0) =x to a certain value
x′, is equal to the extinction time of the process assuming
that X(0) =x′, hence:

E[τx] = E[E[τx|T1, X(T1)]] = E[T1 + τX(T1)]. (45)

Proof of Proposition 1. Three types of events can happen:
i) either a node recovers by itself (at a rate δ), ii) a node is
healed by a resource (at a rate ρ′), or iii) a node is infected (at
a rate β). Let E be a random variable representing the type
of event that happened at T1 (the time of the first change of
the state vector):

E =


1 if a node healed by itself at T1;
2 if a node was healed by a resource at T1;
3 if a node was infected at T1.

Thus:
E[τx] = 1

δ(N
I
(x)−b(x))+ρ′b(x)+βE

I−S (x)

[
1

+δ(N
I
(x)− b(x))E[τX(T1)|E = 1]

+ρ′b(x)E[τX(T1)|E = 2]

+βE
I−S (x)E[τX(T1)|E = 3]

]
.

(46)

Using Lemma 1, we get E[τX(T1)|E= 1]≤E[τx] leading to:

(ρ′b(x)+βE
I−S (x))E[τx] ≤ 1+ρ′b(x)E[τX(T1)|E= 2]

+βE
I−S (x)E[τX(T1)|E= 3].

(47)

We finally set ujn =E[τzjn ] to reach the recur-
rence inequality. Indeed, we have, for all j≥ q (and
j≥ 1 if n=N + 1), by definition of xj−1n and xj+1

n ,
E[τX(T1)|E= 2]≤uj−1n and E[τX(T1)|E= 3]≤uj+1

n . This
comes from the fact that the order is static and the j infected
nodes among {1, ..., n− 1} will receive a resource first.

Proof of Proposition 2. By iterating Equation (23), we ob-
tain when n ≤ N :

ρ′q(uqn − u
q
n+1) ≤

∑K
k=0

∏k−1
j=0

βE
I−S (z

j+q
n )

ρ′q

+ρ′q(uK+q+1
n − uK+q

n )∏K
j=0

βE
I−S (z

j+q
n )

ρ′q

≤
∑K
k=0

∏k−1
j=0

βE
I−S (z

j+q
n )

ρ′q

+ρ′qu01
∏K
j=0

βE
I−S (z

j+q
n )

ρ′q ,

(48)

since uK+q+1
n ≤u01 using Lemma 1 and u01 =E[τ1].

We can now sum over n and use the following the definition

f(k) =
∑N
n=1+q

∏k−1
j=0

βE
I−S (z

j+q
n )

ρ′q :

ρ′q(1− f(K + 1))E[τ1] ≤ ρ′quqN+1 +
K∑
k=0

f(k). (49)

The final step consists in upper bounding uqN+1. Using
Eq. 23 and Lemma 2, ∀k ≤ q,

ukN+1 − u
k−1
N+1 ≤

∑q
j=k

1
ρ′j (βdρ′ )

j−k

+(uq+1
N+1 − u

q
N+1)(βdρ′ )

q−k+1

≤
∑q
j=k

1
ρ′j (βdρ′ )

j−k

+u01(βdρ′ )
q−k+1,

(50)

and, if ρ′ > βd, then:

uqN+1 ≤
∑q
k=1

∑q
j=k

1
ρ′j (βdρ′ )

j−k +u01
∑q
k=1(βdρ′ )

q−k+1

≤
∑q
k=1

1
k

1
ρ′−βd + u01

βd
ρ′−βd

≤ 1+ln q
ρ′−βd + u01

βd
ρ′−βd .

(51)

Replacing uqN+1 with this expression in Eq. 49 gives:

E[τ1] ≤
∑K
k=0 f(k) + q(1+ln q)ρ′

ρ′−βd

ρ′q(1− βd
ρ′−βd − f(K + 1))

, (52)

when 1− βd
ρ′− βd − f(K + 1)> 0.

To proceed, let η ∈ ]0, 1[. When

ρ′> max

{
(1 + 1

η )βd,[
1

1−η
∑N
n=1+q

∏K
j=0

βE
I−S (z

j+q
n )

q

] 1
K+1

}
,

βd

ρ′ − βd
< η, (53)

1− η − f(K + 1) > 0, (54)

and finally:
ρ′

ρ′ − βd
< 1 + η < 2, (55)

which leads to the desired inequality.

Proof of Lemma 5. x− ln(1 +x) is convex, thus always
above its tangent line:
∀x0 > 0,

a = ξ− ln(1+ξ) ≥ (x0− ln(1+x0))+
x0

1 + x0
(ξ−x0), (56)

and thus: ξ ≤ 1+x0

x0
(a+ ln(1 + x0))− 1

≤ 1+x0

x0
a+ x0.

(57)

The final result is obtained by setting x0 =
√
a.

Proof of Proposition 3. Similarly to Proposition 1, the ex-
pected extinction time of an epidemic starting from a state
vector x is the sum of three terms (recall δ= 0 and see the
proof of Proposition 1 for the definitions of T1 and E):

E[τx] = 1
ρ′b(x)+βE

I−S (x)

+ ρ′b(x)
ρ′b(x)+βE

I−S (x)
E[τX(T1)|E = 2]

+
βE

I−S (x)

ρ′b(x)+βE
I−S (x)

E[τX(T1)|E = 3],

(58)

where b(x) = min{q,N
I
(x)} is the number of treatments

distributed in the network.
Using Lemma 1 and Lemma 2, ∀j≥ q, we get:

ρ′q(ujn−uj−1n ) ≥ 1 +β(E
I−S (xn)− jd)(uj+1

n −ujn)

≥ β(E
I−S (xn)− jd)(uj+1

n − ujn),
(59)

and, ∀K<n− 1,

uqn−u
q
n+1 ≥

∏K
j=q

β(E
I−S (xn)−jd)

r (uK+1
n −uKn )

≥ 1
r

∏K
j=q

β(E
I−S (xn)−jd)

r ,
(60)

since uj+1
n ≥ujn using Lemma 1 and thus r(uK+1

n −uKn )≥ 1,
and ρ′q= r.
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5 THE MaxCut Minimization STRATEGY

Based on the analysis of the previous section that uncovered
a strong dependency between the critical behavior of the
diffusion process and the maxcut, we propose a novel DRA
algorithm for arbitrary networks. The main idea is, prior to
the diffusion process, to compute the priority-order `MCM (G)
with minimum maxcut C∗(`) for a given a network G
(optimally reaching down the network’s cutwidthW):

`MCM (G) = argmin` C∗(`), (61)

using any available optimization algorithm for this prob-
lem. Thereafter, during the diffusion process, the strategy
straightforwardly distributes the resource budget to the
infected nodes according to the fixed order `MCM (G). Alg. 1
presents the pseudocode of our strategy.

5.1 Maxcut optimization
Linear arrangement. Minimizing C∗(`) in a network is a
standard combinatorial problem which is usually solved un-
der the framework of linear arrangement (LA) [24], [25], [26].
Formally, a linear arrangement is defined as in Definition 5,
i.e. a mapping ` : V →{1, ..., N} of the nodes of network G
on N discrete positions arranged on a line, and each node
is assigned to one position (Fig. 1). LA is part of what is
broadly referred to as graph layout problems [24], and whose
purpose is to minimize some functional φ over the space L
of all possible node permutations: `∗= argmin`∈L φ(G, `).
Indicative applications are the graph drawing, VLSI design,
and network scheduling [24].

The minimum maxcut linear arrangement (MMLA) is an LA
problem in which the goal is to minimize the maxcut. MMLA
is an NP-hard problem, however, approximation heuristics
do exist in literature [25], [26]. One of the major difficulties
of this problem is that the cost function to optimize is
extremely flat in the search space, i.e. slight changes in the
arrangement will most probably not affect C∗(`).
Relaxation of the MMLA problem. For the latter reasons, we
propose to relax the MMLA problem by optimizing the sum
of the cuts instead of their maximum. This problem is known
as the minimum linear arrangement (MLA) problem and is
part of the larger class of minimum p-sum linear arrangement
(MpLA) problems [27], [28] that minimize the functional:

MpLA : φ(G, `) =
(∑

i,j
Aij |`(vi)− `(vj)|p

)
1/p
. (62)

For p= 1, a simple calculation shows that MLA minimizes
the average cut in the linear arrangement, instead of its
maximum for MMLA (see Definitions 7 and 8). Compared
to MMLA, MLA is easier, more suited to gradient descent
or simulated annealing methods, and produces a smoother
priority-order w.r.t. the cuts at each position of the ordering.
Practical implementation. MLA and MMLA are very chal-
lenging problems and, interestingly, most related works con-
duct experiments on relatively small benchmark networks
for which the optimal cost is not known. Designing a MLA
procedure that can be applied on large social networks
with tens of thousands of nodes is by itself a remarkable
contribution. Note that MCM strategy seeks for an priority-
order with as low as possible maxcut, but not necessarily the
optimal one. The solver we developed for our simulations,

Algorithm 1 MCM strategy
B Prior to the diffusion process:
Compute the priority-order `= `MCM(G) by minimizing the
maxcut C∗(`)
Order the nodes of G according to `, i.e. compute the node list
(v1, ..., vN ) s.t. ∀i∈{1, ..., N}, `(vi)= i

B During the diffusion process:
Input: network G, state vector X(t), resource budget r,

resource threshold ρ
Output: the resource allocation vector ρ(t)

q ← d r
ρ
e

if
∑
iXi(t) < q then

return r
q
X(t)

end if
ρ(t)← 0 // a zero vector in RN

budget← q
i← 1
while budget > 0 do

if Xvi(t) = 1 then
ρvi(t)← r

q
budget← budget− 1

end if
i← i+ 1

end while
return ρ(t)

takes advantage of the group structure of social and contact
networks following an hierarchical approach as follows:
s1) first, we identify dense clusters by applying spectral

clustering and we order those clusters (considered as
high-level nodes) using spectral sequencing [29],

s2) then, we compute a good ordering of the nodes inside
each cluster independently using spectral sequencing
followed by an iterative approach which is based on
random node swaps (swap heuristics inspired by [30]),

s3) finally, the swap-based approach is reapplied to opti-
mize the overall ordering.

Scalability. MCM’s scalability is largely dependent on the
employed offline algorithm for finding the optimal node
order. The process described above achieves fairly good
results (see for example Tab. 1) in reasonable time. Since
spectral clustering and spectral sequencing depend on the
computation of eigenvectors for the highest eigenvalues
of an N ×N sparse matrix with |E| non-zero entries, the
overall complexity of the algorithm is O(|V|+ |E|) [31].
Hence, MCM is generally scalable to the size of real social
and contact networks. Worth to note that, for networks
that are close to being planar and can be embedded in
the 2D plane without many edge intersections (e.g. contact
networks), the clustering step could be skipped since the
spectral sequencing method could be already a sufficiently
good initial approximation which can be further refined
with a subsequent node swapping process.

6 EXPERIMENTAL RESULTS

6.1 Setup and competitors
In the experimental study we consider a fixed number of
treatments q ∈{1, ..., 100} as in Example 1, and relax the
maxcut optimization to MMLA as described in Sec. 5.1.
Regarding the competitors, we compare MCM against five
DRA strategies which are grouped into three types:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNSE.2016.2600029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 10

0 0.5 1 1.5 2 2.5 3

5

0

0.5

1

1.5

2

2.5

3
5

Erdos Renyi
Preferential Attachment
Small World
Geometric Random
2DGrid

x 10

x 10

re
s
o
u
rc

e
 t
h
re

s
h
o
ld

 (
r*

)

maxcut (C*(l ))β.

(a) high infectivity: β=10

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

re
s
o

u
rc

e
 t

h
re

s
h

o
ld

 (
r*

)

maxcut (C*(l))β

x 103

x 103

.
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Fig. 2. Resource threshold w.r.t. the maxcut C∗(`) quantity for various
random network types of 1,000 nodes, and DRA strategies (δ=1). The
dashed line indicator has slope equal to 1 indicating a linear correlation.

A. Static vaccination. We compare to centrality-based
strategies by considering the output of state-of-the-art static
vaccination methods, and that of simple heuristics, as
priority-orders:
• Most neighbors (MN): gives priority to high degree

nodes, hence aims to first remove the contagion from
the network’s core before dealing with the periphery.

• Least neighbors (LN): gives priority to low degree nodes
and works conversely to MN.

• Largest reduction in spectral radius (LRSR): is a state-of-
the-art method from the vaccination literature [7] that
gives priority to nodes whose removal lead to the max-
imum decrease of the spectral radius of the adjacency
matrix of the resulting network.

B. Uniform mixing. We compare to strategies that assume
uniform mixing by considering random resource allocation.
• Random baseline (RAND): the resource budget is as-

signed to d rρe nodes at random at each time.
One of the most important questions we address in this per-
spective is whether targeting specific nodes in the network
can lead to substantial improvement of the suppression,
compared to the treatment of random infected nodes.
C. State-of-the-art direct competitors.
• CURE policy (CURE): is a state-of-the-art method de-

veloped in parallel to our work [17] which follows a
healing plan with minimal maxcut, called crusade. A
crusade can be considered as a priority-order, as it is
formulated as a sequence of totally infected nested bags
where each subsequent bags differ by one node. Thus,
we simulated CURE through implementing a special
priority planning algorithm.

CURE assumes that there is no self-recovery (i.e. δ= 0) while
also concentrates all the resources to the node that should
be healed in order to proceed from the current to the next
smaller bag of the plan. Note that the position of that node
implies the notion of the front that we introduced in use in
our analysis. A brief summary of the differences between
our work and the work in [17] is given in Sec. 1 and a
technical discussion regarding the bounds of extinction time
can be found in Sec. 3.3.

In a scenario of total network infection, CURE and MCM
would start from the same initial priority-order. However, a
significant practical difference is that CURE may revise its
healing plan during the process, though in a way that can
be counterproductive. Specifically, when many reinfections
occur, CURE enters a waiting phase hoping for a reduction

in the number of infectious edges. After this waiting phase,
the crusade (i.e. the priority-order) is recomputed, but only
for the infected nodes, and a new healing phase begins.
A waiting phase is triggered when the number of infected
nodes before the front exceeds r

8d . In practice, this threshold
value can be very small, and we will see in our experiments
that this may lead to substantial delay, or even failure of the
healing plan. Note also that, since CURE leaves the healthy
nodes out of the crusade, it essentially heals the possible
reinfections at random. When there is no node self-recovery,
this does not play an important role theoretically for the
extinction time. It may, however, have significant negative
implications if nodes can recover by themselves: a recom-
putation of the crusade would ignore healthy nodes that lay
before but also after the front, and this can lead to a plan
with particularly high maxcut due to the edges connecting
the ordered infected nodes and the healthy ones which were
left aside. Besides, self-recovery could also create conditions
in which the waiting time does not terminate.

6.2 Quality of the theoretical bound

Fig. 2 shows the relationship between the maxcut C∗(`) and
the resource threshold r∗ under a specific priority planning
and budget. The resource threshold is computed by running
simulations with a fixed number of treatments q, and find-
ing the resource budget above which the strategy is able
to remove the epidemic. Each plotted point is a simulation
with fixed: network, number of treatments, and epidemic
parameters β and δ. To cover a wide range of scenarios,
each of the 100 points plotted in each subfigure involves:

i) the priority-order of a DRA control strategy, randomly
chosen among MCM, RAND, MN, LN, and LRSR,

ii) a fixed q value, set at random in {1, ..., 100}, and
iii) a random network of 1,000 nodes, constructed by em-

ploying at random a generator for: Erdös-Rényi, prefer-
ential attachment, small-world, geometric random [32], and
2D regular grids (see details on these networks in [33]).

According to the results illustrated in Fig. 2, the resource
threshold is always below, but very close, to βC∗(`) which
seems to be a very good approximation of the former. The
very stable, nearly linear, behavior holds even for low in-
fectivity where the random self-recoveries of nodes become
more significant (Fig. 2(b)). Overall, this result justifies the
minimization of C∗(`) as a proxy for removing a contagion
with less resources.

6.3 Empirical evaluation of simulated contagion on real
networks

In this section, we perform simulations on three real net-
works matching different use cases of DRA strategies: the
GermanSpeedway network [34] for analyzing the growth of
an epidemic through road network, the OpenFlights airport
network [35] for epidemics spreading through air routes,
and a subgraph of the Twitter network [36] for the undesired
spread of misinformation or behaviors in social networks.

In order to compare to the CURE policy, we consider
a simplified setting (matching the limitations set in [17])
for the experiments on the GermanSpeedway network and
OpenFlights airport network: we use only one treatment
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(a) low resource budget: r=100
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(b) high resource budget: r=250

Fig. 3. Simulation of an SIS epidemic in the GermanSpeedway network,
under various DRA control strategies. N =1, 168, δ=0, ρ= r (thus
q=1), β=1.

(q= 1) and let no self-healing (δ= 0). On the TwitterNet,
we use a more realistic scenario with 100 treatments and
self-healing to show the robustness of the MCM strategy.

6.3.1 GermanSpeedway network
This is the German Autobahn network from [34]. Due to the
spatial properties of road networks, the respective graph is
symmetric, with a single connected component, and close
to being planar (i.e. a graph embedding on the plane would
create only very few edge intersections other than the end-
point connections). It contains 1,168 nodes and 1,243 edges,
while the degree distribution is particularly flat: 101 nodes
are leaves, 971 nodes have degree 2, and 96 nodes have
degree 3. Finally, the maximum degree is d= 12.

Two scenarios of SIS epidemics with different resource
budget r are shown in Fig. 3. In both of them, MN and
RAND are the worst strategies. MCM is the best performing
strategy, and all other strategies are strongly affected by
the resource budget. LRSR is the second best performing
strategy, although the low budget causes an increase in
the extinction by a factor of 7. The CURE policy presents
a behavior with characteristic ups-and-downs due to its
waiting phase. Even for a high resource budget, entering the
waiting phase can happen with non negligible probability
(see Fig. 3(b) for an example of such a scenario) and largely
degrade the performances of the CURE policy.

The capacity of the strategies to remove the epidemics
is correctly predicted by their maxcuts (except CURE whose
behavior depends on whether or not the strategy enters its
waiting phase): 650± 50 for RAND, 379 for MN and LN,
104 for LRSR, and 29 for CURE and MCM.

6.3.2 OpenFlights airport network
This network represents the US air traffic for the year
2010 [35]. The nodes are the US airports, plus those non-
US airports connected through flights with the former. We
used a symmetric, undirected, and unweighted version of
this network containing 2,939 nodes in a single connected
component with 30,501 edges. For this network, d= 242.

Fig. 4 presents two epidemic scenarios, similarly to Fig. 3.
MCM is the best performing strategy and the least affected
by the variation in the resource efficiency. LRSR, on the
other hand, fails completely with a low resource budget
due to the fact that its maxcut is located at the beginning
of the considered node ordering (see more details in the
experiment in Fig. 5). The CURE strategy presents again an
unstable behavior as an effect of its waiting phase, which
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(a) low resource budget: r=3000
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(b) high resource budget: r=7000

Fig. 4. Simulation of an SIS epidemic in the OpenFlights airport network,
under the control of various DRA strategies. N =2,939, δ=0, ρ= r
(thus q=1), and β=1.

shows that the conditions under which this policy gets into
the waiting phase are not rare at all and can be catastrophic.
Indeed, CURE is outperformed even by RAND.

Again, the capacity of the strategies to remove the
epidemics is correctly predicted by their maxcuts (except
CURE): 7,800±100 for RAND, 7,504 for MN and LN, 6,223
for LRSR, and 2,231 for CURE and MCM.

6.3.3 TwitterNet social network
This network consists of 1,000 ego-networks extracted from
the Twitter social network [36]. We use a symmetrized and
undirected version of the network which has 81,306 nodes,
1,342,303 edges, and d= 3,383. This network has a single
connected component with a rich community structure.

Regarding Theorem 1, the maximum degree d= 3,383
in the network leads to an ε= 20 for the MCM strategy
(ε= 2.1 for RAND). Tab. 1 summarizes the characteristics
of the different priority-orders of the compared strategies,
where MCM achieves a five times smaller C∗(`) value than
the second best LRSR. This implies that MCM would need
a five times smaller resource budget compared to LRSR so
as to contain a diffusion process on this network.

The cuts at every position of the LRSR and MCM plans
are shown in Fig. 5(c) (rotated plot). Fig. 5(a)-5(b) show two
scenarios of full initial infection, varying in the resource
efficiency, where MCM performs best in removing the dif-
fusion over time. Furthermore, Fig. 5(d)-5(e) provide more
insights into the scenario of Fig. 5(b). The evolution of each
diffusion is illustrated as follows: each line of the figure
shows the state of one node of the network throughout
the simulation (black: contagious, white: healthy), and the
nodes are sorted in the y-axis according to the computed
priority-order (aligned y-axis with Fig. 5(c)). We can observe
that the large cuts located at the beginning of the LRSR
order, act as an insurmountable barrier preventing the heal-
ing of more than the first 5,000 nodes of the priority-order
(βC5,000( L̀RSR )≈ r= 12,000 for the 5,000-th node). Contrary,
MCM gradually reduces the contagion, which is visible by
the clear advancement of the front. Note also that some
nodes become healthy beyond the front due to self-recovery.

In agreement with our previous analysis, our results
show that: i) the uniform mixing hypothesis leads to a
massive drop in efficiency, since MCM substantially outper-
forms the RAND strategy, ii) despite being efficient in the
static vaccination problem, centrality-based priority-orders
are suboptimal for the DRA problem, iii) the βC∗(`) value
can be used as a good criterion for assessing the quality of
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Strategy Maxcut Maxcut Expected resource threshold
% w.r.t. RAND (δ=1, β=0.1, q=100)

RAND 670,000 ± 1000 100.0 % 67,000
MN 628,571 93.8 % 62,957
LN 628,571 93.8 % 62,957
LRSR 349,440 52.2 % 34,944
MCM 71,956 10.7 % 7,196

TABLE 1
Maxcut values C∗(`) for different DRA strategies

in the TwitterNet dataset [36]. According to
Theorem 4 and the empirical validation of Fig. 2,

the expected resource threshold is β C∗(`).
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(d) network state under LRSR
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(e) network state under MCM

Fig. 5. (a)-(b) Simulation of a diffusion process in the TwitterNet subset of 81,306 nodes [36]. δ=1, β=0.1 and q=100 (recall ρ= r/q). MCM clearly
outperforms the other heuristics. (c) Cuts for LRSR and MCM. (d)-(e) Visualization of the diffusion of (b) at the node level (infected nodes in black).
Nodes are ordered according to LRSR and MCM priority-orders, respectively. The inset figure provides a closer look in (e).

a priority-order, iv) the CURE policy fails to be effective in
practical applications due to its waiting phase, and v) MCM
outperforms all its competitors in all our experiments.

7 ROBUSTNESS OF MCM
Consider that the authorities are prepared to react to an
epidemic outbreak using the MCM priority planning ap-
proach. They have thus precomputed a priority-order `
for the network under threat, which is optimized to have
the minimum maxcut, i.e. C∗(`) =W and, without loss of
generality, let us assume that the maxcut value is unique
along `. In essence, the robustness analysis for MCM reduces
to a study of how robust the priority-order ` is, in the
presence of noise or perturbations in the network structure.
Next, we analyze how the maxcut property is affected by
such modifications, since that is the quantity that determines
the expected extinction time of the epidemic.

Under this perspective, we briefly discuss about cases
where the observed network, utilized by the MCM strategy
to compute the priority-order, differs from the real underly-
ing network in which the epidemic is spread. This situation
can arise for several reasons, including:

1) Malicious modification of the network in order to lessen
the efficiency of an employed treatment strategy.

2) Uncertainty in the data used for inferring the network,
e.g. the position of people in contact networks.

3) Misclassification of edges when inferring a network
from relational data.

4) Use of outdated data, i.e. a past observation of the
network structure which may have changed since then
(edges may have appeared or been removed).

The aforementioned scenarios produce quite different
noise profiles, with the malicious intervention (1) being
the worst-case scenario where the worst modifications are
applied to the network intentionally. However, we will see
in Sec. 7.3 that the MCM exhibits robustness for the very nat-
ural scenario of type (2), where there is uncertainty for the
position of nodes on the space in which a contact network
is formed. The misclassification of edges (3) may, as a first
approximation, be modeled by a purely random noise that
is adequate in most cases. Nevertheless, correlated noise
may appear in practice because an inference algorithm may
consistently fail to recover particular structures of edges.

Interestingly, we will see in Sec. 7.2 that adding random
noise is very similar to malicious modifications w.r.t. the
maxcut. Finally, the dynamic evolution of the network can
be seen as an intermediate scenario between (1) and (2)
since edges can appear anywhere, but, in contact or social
networks, they will tend to appear at already strongly con-
nected neighborhoods (i.e. increasing the local edge density
by creating triangles).
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7.1 Malicious modification of the network
Knowing the priority-order used by the authorities, a ma-
licious agent can make K adversarial modifications to the
edges of the network. Removing edges may destroy the
optimality of `, however, it would not increase the maxcut.
As for adding new edges, in the worst case, each of them
would increase the maxcut by one (i.e. by linking one node
before and one node after the position of the maxcut in `).
Thus, for the maliciously modified network, we have:

C∗
MAL

(`) = C∗(`) +K. (63)

Thus, for networks with large minimum C∗(`) (e.g. linear
w.r.t. network size, see Sec. 3.2 for examples), a noticeable
reduction of the effectiveness of the MCM strategy requires
the addition of a very large number of edges (e.g. propor-
tional to the size of the network).

7.2 Random additive noise
Consider the edge state for each node pair (i, j) to change
with probability p∈ [0, 1]. The expected maxcut is then
bounded by:

C∗(`)(1− 2p) + pc∗(N − c∗) ≤ E[C∗
RAND

(`)] ≤ C∗(`) +
pN2

2
,

(64)
where c∗= argmaxc Cc(`) is the position where C∗(`) is
located in the priority-order (see Eq. 5). When the max-
cut does not lay at the beginning or end of the priority-
order, then c∗=αN where α∈ ]0, 1[, which leads to
C∗(`)(1− 2p) + pc∗(N − c∗) = C∗(`)(1− 2p) +α(1−α)pN

2

2 .
Note that, since the number of modified edges is in expec-
tation K = pN(N − 1)

2 , adding random edges is of the same
order of magnitude as maliciously adding edges aiming to
increase the maxcut. In fact, if the maxcut is in the middle
of the priority-order, then choosing two nodes at random
would connect with 50% probability a pair laying on both
sides to c∗, and hence increase the maxcut by one.

7.3 Node localization uncertainty in contact networks
A usual scenario for inferring contact networks consists in
relying on the approximate positions of infected (sometimes
healthy as well) individuals. Due to data scarcity and the
expected amount of noise, a coarse-grain description of the
network is usually preferred, for instance, by computing the
number of infection cases in large areas, instead of spot-
ting each individual. In such a setting, locating the coarser
nodes plays a key-role in identifying the high-level network
structure, e.g. how cities are connected to one another, while
the local structure of the contact network is unobservable
and highly variable. However, a convenient property of the
MCM strategy is that an optimized priority-order encodes
the high-level network structure, even though the local node
connectivity may be inaccurate. In order to investigate this
characteristic, we perform simulations on random geometric
networks [32] generated in the following way:

i) the N nodes are first placed at positions drawn uni-
formly in the square [0, 1]2, and then

ii) each node is connected to all nodes within a distance ϑ.
These networks are simple models imitating real contact
networks in which people that are closer than a certain
distance are regarded as being in contact.
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Fig. 6. The effect of noise in the node locations of a contact network
to the maxcut C∗(`): (a) Comparison between the C∗(`) of a random
priority-order (green), the optimal priority-order computed each time
using the true node locations (red), and the priority-order computed on
the observed network and used to arrange the true underlying network
(blue), (b) edges modifications in the network due to the added noise.

Now, we consider that the nodes’ observed positions in-
ducing the network G are generated from the true positions,
let that network be Ĝ, which have been subject to additive
Gaussian noise of standard deviation σ, i.e. G= Ĝ+noise.
Hence, the quality of the priority-order `(G), which has
been optimized for the observed G instead of the actual
underlying network Ĝ, is expected to become poorer as σ
grows. To evaluate that, we use the following protocol. We
first generate the observed random geometric network G,
also compute `(G) and the maxcut C∗(`) (using the MLA
relaxation, see Sec. 5.1). Next, by adding noise of increasing
intensity to node positions, we recompute the edges and
generate a series of networks, each of which can be regarded
as the true underlying network Ĝ. Finally, we arrange Ĝ
according to `(G), assess the new value of the maxcut, and
compare it to the maxcut of its optimal order `(Ĝ).

Fig. 6(a) shows the increase in the maxcut for a priority-
order ` as a function of noise intensity. First, we can see
that, in the absence of noise, the maxcuts of all optimized
priority-orders are some orders of magnitude lower than
that of a random node ordering (red vs. green line). This
is expected for networks embedded in 2D spaces (e.g. 2D-
grids). Second, as σ increases to become three times larger
than the neighborhood size ϑ, the maxcut of both optimized
priority-orders (w.r.t. the observed and the true network;
red vs. blue line) are of the same order of magnitude, and
remain much lower compared to that of random ordering.

Finally, using Fig. 6(b), one can relate the increase in the
maxcut to the number of edge modifications due to noise.
The number of changes increases rapidly w.r.t. σ (note the
difference in scale between Fig. 6(a)-6(b)). For σ= 3ϑ, and
from the perspective of local connectivity and edge-to-edge
comparison, the network G and the derived Ĝ have almost
nothing in common since most of the original edges get
modified. However, when the priority-order of the former
is tested on the later network, it is still valid in terms of the
high-level structure. This is a very sound empirical finding
regarding the robustness of the MCM strategy: it testifies
that MCM can deliver good results in realistic scenarios with
high uncertainty in the localization of nodes. Note also that
this situation is much milder than the malicious and random
cases, in which the increase in the maxcut is of the same
order to the number of the added edges.
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8 CONCLUSION

In this paper, we presented priority planning, a novel type
of dynamic strategies for allocating resources on nodes of
an arbitrary network aiming to suppress an undesired SIS
diffusion process. We reduced the planning problem to that
of computing offline a linear arrangement of the nodes
and, based on our theoretical analysis on the quality of any
such priority-order: i) we demonstrated the key-role of the
maxcut for assessing whether a strategy would be success-
ful in removing the contagion, ii) we derived the maxcut
minimization (MCM) strategy that distributes resources to
nodes in the priority-order with the minimum maxcut, and
iii) we provided a practical MCM algorithm that includes
an efficient and scalable solver for the minimum linear
arrangement problem which we considered as relaxation to
the more difficult maxcut minimization.

Our experimental results verified that, for a wide range
of network types, the maxcut provides a good approxima-
tion of the resource threshold under a given strategy. More-
over, the MCM strategy outperformed competing strategies
on three real-world networks that raise the interest for prac-
tical application of epidemic control: a highway network,
an airport network, and a large social network. We also
provided an insightful analysis of the behavior of the MCM
strategy under various noise profiles, which showed the
robustness of the method with respect to uncertainties in
the location of individuals in contact networks.
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